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ABSTRACT 
When the user is engaged with a real-world task it can be 
inappropriate or difficult to use a smartphone. To address this 
concern, we developed ShoeSense, a wearable system 
consisting in part of a shoe-mounted depth sensor pointing 
upward at the wearer. ShoeSense recognizes relaxed and 
discreet as well as large and demonstrative hand gestures. In 
particular, we designed three gesture sets (Triangle, Radial, 
and Finger-Count) for this setup, which can be performed 
without visual attention. The advantages of ShoeSense are 
illustrated in five scenarios: (1) quickly performing frequent 
operations without reaching for the phone, (2) discreetly 
performing operations without disturbing others, (3) 
enhancing operations on mobile devices, (4) supporting 
accessibility, and (5) artistic performances. We present a 
proof-of-concept, wearable implementation based on a depth 
camera and report on a lab study comparing social 
acceptability, physical and mental demand, and user 
preference. A second study demonstrates a 94-99% 
recognition rate of our recognizers.  

Author Keywords: Wearable, gestures, gesture set, shoe, 
sensor placement, mobile. 

ACM Classification Keywords: H.5.2 [Information 
Interfaces And Presentation]: User Interfaces - Interaction 
styles  

General Terms: Design, Experimentation, Human Factors 

INTRODUCTION 
Using a mobile device when the user is engaged with a real-
world task is sometimes inappropriate (meeting, family 
dinner, church), difficult (walking, running), dangerous 
(driving) or virtually impossible (the blind) [1]. Wearable 
technologies offer the promise of an ‘always available’ 
computer, but the requirement of a physical mount point for 
sensors can present challenges for acceptability [11,17]. To 
address this concern, we developed ShoeSense. ShoeSense 
is a wearable system consisting in part of a shoe-mounted 
depth sensor pointing upward at the wearer (Figure 1). On-
shoe sensor placement has been demonstrated in 
commercial applications [3], and has the advantage of not 

being visually apparent, while at the same time affording a 
view suitable for the detection of hand and arm gestures.  

To demonstrate the efficacy of on-shoe placement, we 
present three novel sets of hand-gestures (Triangle, Radial, 
and Finger-Count) designed for this setup. These gestures 
can be performed without visual attention. The 
characteristics of ShoeSense are illustrated in five 
scenarios: ShoeSense makes it possible (1) to quickly 
perform frequent operations without reaching for a 
handheld (such as answering the phone, reading emails or 
changing songs); (2) to perform simple operations without 
disturbing others (such as routing incoming calls to 
voicemail, activating silence mode, and sending predefined 
messages); (3) to alleviate some of the limitations of mobile 
devices (such as the fat finger problem [47]); (4) to provide 
support for accessibility such as home automation; and 
finally (5) to do artistic performances. 

In addition to enhancing social acceptability, ShoeSense 
introduces a novel and unique perspective (from the shoe) 
making it possible to recognize discreet and relaxed as well 
as large and demonstrative gestures without the need for 
cumbersome hats or body-mounted sensors. The setup 
provides a large operating volume for performing gestures 
and does not constrain body movement. In addition to 
making wearable sensors more socially acceptable, on-shoe 
mounting offers several benefits. (1) Shoes are ‘always 
available’, reducing the need for artificial wardrobe additions 
such as a pendant or cap. (2) Reduced risk of accidental 
occlusion by other clothes. (3) Improved image stability. (4) 
Reduced risk of damage. (5) The weight, rigidity, and large 
volume of shoes better affords storage of electronics. Finally, 
(6) the shoe can be used for harvesting power [29]. 

a)          b)  

Figure 1:a) ShoeSense perspective. b) Triangle gesture. 



 

In this paper, we present and analyze ShoeSense, including 
three gesture sets designed for simple eyes-free execution 
and detection by a shoe-mounted sensor. We describe a 
proof-of-concept prototype based on a depth-camera to 
recognize these gestures, present its limitations and 
demonstrate different classes of applications. We then 
address the social acceptability of ShoeSense gestures by 
reporting the results of a lab study comparing the three 
gesture sets. Finally, we report the results of an experiment 
validating our recognizer’s suitability for a shoe-mounted 
depth camera. 

The primary contributions of this paper are: 

• A novel wearable platform enabling a large variety of 
gesture-based applications. 

• A new perspective for eyes-free gestural interaction 
enabling discreet and relaxed as well as large and 
demonstrative gestures. 

• Three novel gesture sets, designed for a shoe-mounted 
camera, and experimentally validated as socially 
acceptable, easy to perform, and robustly detectable. 

To situate ShoeSense in the context of existing research, we 
first review related work. 

RELATED WORK 
In creating ShoeSense, we sought to build upon the 
extensive related work in the area of wearable computing. 
We review two sub-areas of work in that space: the use of 
body-worn cameras for gaining context, and the use of 
cameras to enable gestural interaction. We then discuss 
works, which have inspired the design of our gestures, as 
well as projects, which have utilized foot-based interaction. 

Body-Worn Cameras for Contextual Information  
Wearable visual computing uses body-mounted cameras to 
capture contextual information. In this regard, [36] reports 
several studies proposing different locations to attach 
standard video cameras to the wearer’s clothing. Locating 
the camera near the eyes, for example on a hat (WUW [37] 
or [16,45]), yields images that closely match the user’s 
perspective. Other work has shown merit in placing the 
camera on users’ shoulders [35], on their chest (StartleCam 
[21], SixthSense [37] or Gesture Pendant [50]), and in 
multiple other locations on the body [46]. While these 
placements offer several advantages, each requires the 
wearer to add elements to their wardrobe or to don 
technology in visually apparent areas of the body. Our goal 
in designing ShoeSense was to reduce the social burden of 
wearable computing by placing the sensors in a visually 
unobtrusive location, and in an article of clothing typically 
worn throughout the day. Earlier work has proposed 
mounting a camera on the user’s shoe [15]. Unlike 
ShoeSense, however, this camera was aimed towards the 
ground and used to track user activities rather than to enable 
gestural input. 

Gestural Interaction with Body-Mounted Cameras 
Several projects have proposed body-mounted cameras to 
support gestural interactions. SixthSense [37] can project 
digital information atop physical objects, which can be 
adjusted using hand gestures captured by a body-worn 
camera. Gesture Pendant [50], HoverFlow [28] and 
Imaginary Interfaces [18] also use a chest-mounted camera 
for capturing hand gestures. All these techniques force the 
user to perform gestures with the hands at the height of the 
chest, which can be tiring and draws attention from others. 
Further, chest-mounting electronics have been shown to 
introduce serious social issues, suggesting the need for a 
more discreet placement [11,17]. 
Starner et al. demonstrated the use of a downward cap-
mounted camera for recognizing sign language [49]. 
WristCam [52] and PinchWatch [33] sense subtle finger 
gestures with a camera mounted on the wrist [52] or the 
chest [33], but these cannot capture large and demonstrative 
gestures. Finally, Ni et al. propose to capture very small 
gestures in the context of ‘disappearing’ mobile devices 
thanks to a one-pixel camera [39]. While relevant, our goal 
in this work is to minimize the disruption of the 
introduction of a body-worn camera for ‘always available’ 
gesture detection – thus, these projects serve as inspiration 
for interaction, but not for the design of our hardware and 
gesture sets which its unique perspective required. 

Gesture Design  
In designing the gesture language for ShoeSense, we 
considered several projects that demonstrated advantages of 
gestural interaction [7, 9, 30, 53]. For instance, Baudel et al. 
[9] proposed a set of free-hand gestures in Charade for 
controlling a slide show. Marking menus [30] used an 
efficient set of 8 radial gestures with a pen or mouse. 
Finger-Count menus allow the user to perform two-handed 
and multi-finger interaction on a multi-touch surface [7]. 
Pinch gestures (for instance in [53]), with one or two hands, 
have been shown to be easy to perform and to recognize.  
In each case, successful gestures have been designed based 
on consideration of the limitations of sensing, context of use, 
and use case. Another approach consists of allowing study 
participants to define the gesture language [44, 54]. While 
informative, this approach is less suitable for ShoeSense, 
where gestures must be carefully designed to ensure robust 
detection given the placement of the camera. Throughout this 
paper, we use the Wu formulation of the phases of a gesture: 
registration, continuation, and termination [55]. 
While several projects have included the use of feet for 
interaction ([3, 5, 24, 40]), our work uses the foot as a 
mounting point for a sensor of hand and arm-based 
gestures. Even though ShoeSense could be enhanced in the 
future to also detect interactions similar to those described 
in previous work, our focus is on leveraging the advantages 
of body-mounted gesture systems while reducing the social 
burden inherent in wearing digital technology on the body.  
Building on this earlier work, we now describe ShoeSense, 
and the gestures we designed, which take advantage of its 
unique perspective. 



 

SHOESENSE 
ShoeSense consists of an upward-oriented sensor mounted on 
a shoe. We first discuss the advantages locating the sensor on 
the shoe. We then describe its I/O capabilities. Finally, we 
describe the implementation of our device and software. 

Shoe-Worn Device 
As discussed above, the primary advantage of using shoes 
as a mounting point is that this setup can enhance the social 
acceptability of the technology. In addition, mounting a 
body-worn camera on the shoe offers practical advantages: 

Wardrobe integration. Shoes are typically worn 
continuously throughout the day [23], ensuring that the 
camera is commonly available. This alleviates the need to 
artificially add elements to the wardrobe, such as a cap, 
pendant, or other enclosure. 

Reduced occlusion. Sensors worn on the torso face the 
possibility of occlusion by jackets and other occasional-use 
clothing. In contrast, a mounted shoe camera has a reliable, 
unobstructed view of the area in front of the body. 

Image stability. Because the foot is planted on the ground, 
even while walking, this location affords high physical 
stability of the camera. 

Low maintenance. In comparison to t-shirts, pants, or even 
jackets, shoes are rarely laundered. This is an advantage for 
ShoeSense as washing machines are a harsh environment 
for wearable devices [24]. 

Comfort. The weight of visual wearable devices, even if 
very light, can be cumbersome for users when they are 
worn on the top of the body. Further, the added volume and 
rigidity of shoes provides an opportunity to safely place 
wearable computing equipment [3]. 

Discreetness. ShoeSense does not disrupt unrestricted and 
natural views of the face, which is an important criterion in 
social interaction [35] and a major difference with devices 
such as those using head-mounted cameras [35]. 

Energy. Power distribution is a major challenge of wearable 
devices [29, 31, 48] as there is a trade-off between capacity 
and weight/size of batteries. Previous studies [31, 48] have 
shown that the foot is an excellent location for generating 
and storing human power when the user is walking [29]. 

ShoeSense shares some problems of visual wearable 
devices concerning operation in harsh outdoor conditions. 
For instance, rain or extremes in lighting can degrade 
sensor performance. Mud or dust can also affect ShoeSense, 
as the sensor is located close to the ground. Moreover, the 
field of view of the camera can be partially occluded by 
loose clothes or objects (carrying a bag). Additionally, the 
relative placement of hands in the camera’s field of view is 
more variable than with other arrangements. Finally, the 
integration in all of the user’s shoes could be prohibitive 
(though hardware constantly gets cheaper). Therefore, in a 
practical design we envision a small and easily-pluggable 
device, which can quickly be attached to different shoes. 

Gestural Input 
ShoeSense is a gesture-based system. The location of the 
sensor on the shoe offers a novel perspective for detecting 
and recognizing gestures. A pilot study confirmed that an 
RGB camera with a traditional field-of view (47°-53°) was 
sufficient to capture arms’ locations within the entirety of 
their dynamic reach envelope [22]. This is not the case for a 
camera on the chest, given its close proximity to the arms 
and hands. ShoeSense thus provides a large detection volume 
enabling a wide variety of gestures to be observed.  
Compared to traditional chest cameras, ShoeSense does not 
force users to make superfluous arm movements to reach 
the field of view of the camera, which can be exhausting 
and attention-grabbing [43]. ShoeSense gestures are more 
relaxed as they can be performed close to the resting position 
of the hands, making them both more comfortable and 
discreet. The large viewing area of a shoe-mounted camera 
can also enable large and demonstrative gestures, such as 
may be useful to dancers, stage actors, or musical performers 
[13]. However, in this article we mainly focus on relaxed 
and discreet gestures for everyday use. After repeated 
experimentation, we developed three sets of gestures: 
Triangle, 3D Radial and Finger-Count. Triangle and 
Finger-Count are examples of two-handed gestures, while 
3D Radial is a one-handed gesture. 

Triangle Gestures 
Triangle gestures are a set of two-armed poses formed by 
creating a triangle with the arms and torso. Triangle 
gestures are registered by placing a hand atop the opposing 
arm (Figure 2). In pilot testing, we found that users and 
system could robustly distinguish between 5 registration 
poses (Figure 2). Once initiated, each of the gestures may 
be continued by modifying the shape of the triangle, by 
sliding the hand along the arm, or by rotating the ‘triangle’ 
in space. The gesture is terminated by removing the hand. 

The triangle poses are static making it possible to recognize 
them within only one frame. Moreover, they provide an 
absolute reference: users can associate specific commands 
to specific locations on their arm through proprioception. 
Finally, the inclusion of a continuation phase means the 
triangle gesture can be used to control a parameter. This 
continuation can be mapped absolutely, or relatively to 
allow fine-grained precision with clutching. 

 
Figure 2: Triangle gesture set. Apex of each triangle is the 

wrists (1,3), hands (2), and arms (4,5) respectively. 



 

Pinch Registration Pose  
A pinch registration pose consists of forming a “hole” in the 
hand by touching the thumb with the index finger [53]. It is 
an excellent registration pose for gestural interaction as it is 
easy to perform, easy to recognize, different from daily life 
gestures, and does not require a timeout [33, 53]. Pinch can 
be combined with triangle gestures. For instance, when the 
user makes a triangle gesture, an audio indication of its 
function could be given, and the function is only executed 
once a pinch is performed. The pinch also acts as the 
registration pose for our remaining 2 gesture sets. 

3D Radial Menus 
3D radial menus are an extension of 2D radial menus, 
formed by extrapolating the options of the 2D menu into 3D 
space [30]. While 2D radial menus can contain up to 8 
commands, a 3D radial menu can contain up to 26. To 
make these gestures unambiguous, the menu is registered 
by a pinch (Figure 3). A command is then executed by 
continuing the gesture in the direction of the desired menu 
item, and terminated by opening the pinch. We argue that 
this extension has the promise to maintain the properties of 
marking menus (simple, scale-independent and fast [6, 30]) 
without degrading memorization [6]. Because 26 options 
may be sufficient to remove the need for nesting, it is also 
possible to select and to control a command in the same 
gesture, as with control menus [42], enabling easy chunking 
of gestural actions into complex commands [12]. 

 

Figure 3: 3D radial gesture set (Left, Right, Front, Back, Up, 
Down) mapped to frequent actions on a smart phone. 

Finger-Count gestures 
These static gestures are inspired by [7, 10] and consist in 
expressing a unary number by extending that number of 
fingers (Figure 4). Considering only the number of fingers 
rather than their identity makes the technique easier to 
understand and gives additional physical flexibility [7, 10]. 
To avoid false positives, we again use the pinch registration 
pose. Finger-Count gestures are performed on the dominant 
hand and are interpreted only if a simultaneous pinch is 
detected on the other hand, or if an appropriate 3D radial 
menu item is currently held in the other hand. Finger-count 
can also be used as a modifier for radial menu selections, 
similar to [32], or for triangle gestures. For instance, a left 
arm triangle gesture with 5 extended fingers could mean: 
“Call” (left arm gesture) the contact id “5” (Finger-Count). 

 
Figure 4: Finger-Count gesture set. Pinch on one hand 
(registration) and extended fingers on the other hand. 

In summary, we propose three gesture sets (Triangle, 3D 
Radial, Finger-Count) as gestural input for ShoeSense and 
several possible gesture phrases (Triangle + Pinch; Triangle 
+ Finger-Count; Radial + Finger-Count) to select discreet 
and continuous input. We now consider possible output 
modalities of ShoeSense. 

Output Modalities 
Although our proof of concept device is large, we envision 
that further engineering could enable manufacturing of a 
device small enough to be smoothly integrated into a shoe, 
making it difficult to have a traditional visual interface. 
Interaction with a miniaturized device is then limited by the 
degree to which user interface affordances can be presented 
and feedback can be provided. Similar to Ni and Baudisch, 
we discuss three elementary output modalities attached to 
the device itself [39]. We then propose two different 
annexing modalities with higher bandwidth. 

Limits of Shoeborne Indicators 
As our goal is to locate hardware within the shoe, a speaker 
is not appropriate as it is far from the ears and has limited 
privacy. In contrast, tactile (e.g., vibrators) or visual 
feedback (e.g., LED lights) are suitable for the class of 
applications where the user is already familiar with the 
available actions. Tactile is more private (and the foot is 
fairly sensitive), while visual feedback is less obtrusive. 
However, each forces users to learn a new language and is 
low bandwidth. For this reason, shoeborne indicators are 
only used for confirming that a gesture has been recognized 
or indicating the current status (i.e. on/off; in progress, etc.). 

Opportunistic Audio Channel Annexing 
Annexing is the process of serendipitously expanding the 
I/O capabilities of a system by using nearby I/O 
components [41]. While loudspeakers are inappropriate, 
headphone audio can provide a useful feedback channel. 
This would require an additional device, but would provide 
greater bandwidth and be easy to interpret. For instance, the 
system can play the name of the menu items during 
exploratory gestures. It can also be an implicit part of the 
application response (e.g., in MP3 players there is no need 
for a “volume up” indicator, it just gets louder). Commercial 
applications have already demonstrated wireless 
connections between shoe-mounted sensors and iPod 
devices [1]. Annexing of that iPod device’s audio channel, 
where appropriate, could enable this feedback mechanism. 

Opportunistic Display Annexing 
To enable visual output beyond simple LED indicators, a 
ShoeSense device could annex mobile device displays, or 
larger displays in the nearby environment. ShoeSense could 
then be thought of as a peripheral input device for 
applications running on those other devices. Users perform 
mid-air gestures and receive visual feedback on the display. 
While audio feedback is serial, visual feedback provides 
random access and a more direct physical mapping. A 
limitation of annexing a handheld screen is that holding the 
device limits the users’ possible input gestures. 



 

Implementation 
To develop a proof-of-concept implementation of 
ShoeSense (Figure 5), we used a BeagleBoard, a small 
(82.5x82.5mm), single-board computer with a 1 GHz ARM 
Cortex-A8 processor and 512 MB onboard memory. We 
used a depth camera (Microsoft Kinect) as a sensor to 
enable recognition of hand gestures. The distance between 
the foot and resting position of the hand (~90cm) is ideal 
for capturing high quality images given the stock Kinect’s 
lensing. When running on the BeagleBoard, our prototype 
processes depth images at a rate of about 5 frames per 
second. This is sufficient to demonstrate the basic 
interaction techniques during mobile use of the system.  

Software 
ShoeSense runs Linux, uses OpenNI for capturing depth 
images and OpenCV for vision. It leverages the relatively 
fixed distance of the hands/arms from the shoe for simple 
background subtraction by thresholding the depth image 
(we use a depth range of 90cm ± 20cm). 

Triangle gestures 
Triangle gestures are detected if a large inner contour 
(green color) is found in the image pixels (Figure 6-a). 
They are then recognized by identifying the left (pl), right 
(pr), and topmost points (pi) of the inner contour as well as 
the topmost point (po) of the outer contour (Figure 6-a). The 
orientation and the norm of the vectors [Pi ; Po] and [Pr ; Pi] 
are sufficient to distinguish the 5 triangle gestures. Finally, 
we use the ratio of ||PiPl|| / ||PoPl|| to precisely control a 
value. While the algorithm is quite simple, it is robust as 
each component is easily detected, with a low error rate. 

Pinch gestures and Radial strokes 
We recognize pinch gestures by using the algorithm 
proposed in [53]. It consists of detecting an inner contour 
(red) in the arm contour. A radial gesture is interpreted by 
tracking the location of the pinch over time (Figure 6-b).  

Finger-Count gestures 
As described above, we limit finger-count detection to 
frames, which also contain a pinch registration pose as 
shown Figure 6-c. Several methods have been proposed to 
count fingers [8, 14, 51]. From pilot studies, we chose the 
k-curvature approach [51] with k=5 because it is simple to 
implement, does not require RGB images and provides 
good results even if the hand if slightly tilted. 

While relatively simple, this combination of gestural 
primitives enables a significant set of possible applications. 

 

Figure 6: (a) A user performing a hand-to-left-wrist triangle; 
(b) a 3D radial gesture; (c) a 5 finger-count gesture. 

APPLICATIONS 
Various interaction scenarios give rise to several classes of 
interaction. We now review these classes, along with several 
envisioned sample applications. We also sketch several 
interaction techniques for mobile devices (Figure 7). 

Frequent & Favorite Operations 
ShoeSense users can quickly execute favorite/frequent 
operations such as “answer a phone call”, “previous/next 
track”, “volume up/down.” Indeed, ShoeSense does not 
require reaching for the phone in the pocket or bag which 
requires time and can lead for instance to missed phone calls 
[4]; to initiate an interaction users simply perform a gesture. 

Favorite or frequent operations with mobile devices 
generally require limited feedback and can involve MP3 
player (play/pause, previous/next, repeat one/all, etc.), 
phone (pick up/hang up a phone call, call favorite contacts, 
etc.); messages (reading your most recent e-mails or tweets, 
etc.) or monitoring operations (heart rate, blood pressure, 
etc.). While several gesture-command mappings are 
possible, we propose to use Finger-Count to select among 
function types at a root menu level (e.g., MP3, Phone, 
Messages, Monitoring), which contains 5 or fewer 
categories. A Radial gesture would then select commands 
within the selected category (necessary as any given 
category can contain a larger number of commands). 
Moreover, as Finger-Count requires a pinch in one hand, it 
makes it possible to perform these two gestures 
simultaneously, increasing efficiency and avoiding some 
possible confusions of mode switching. Finally, Triangle 
gestures could then be reserved for universal parameters, 
such as volume, brightness, etc. 

Inexact and Inattentive Operations 
Hudson et al. describe inexact and inattentive interaction as 
simple and common operations with a mobile device that 
can represent a disruption form another activity involving 
people (meeting, family dinner, etc.) or from the primary 
task of the user (for example walking while carrying a bag) 
[26]. ShoeSense has several advantages for controlling 
functions that fall into one of the following categories. 

 
Figure 5. The ShoeSense prototype.  

The system is wholly contained as a wearable computer. 

 



 

 
Figure 7: 3D control on mobile devices. (a) Moving the finger 
along the arm (modifying the shape of the triangle) rotates the 
3D object. (b) x, y and z translation with 3D radial gestures. (c) 

The user chooses a predefined control with a finger-count 
gesture (3 fingers on the right hand + a pinch formed by the 
left hand and the device). (d) Finger-count gestures to select 

commands on a watch (simulated by an iPhone on the wrist). 

 

Fast interaction. As mentioned previously, users do not 
need to grasp a device. So they can, for instance, quickly 
silence a ringing cell phone minimizing the time of the 
disturbance. 

Acquisition-free input. The user’s hands do not need to hold 
a special device for interaction [33]. Not only can the user 
easily return to his or her primary task, but also the hands 
become free more quickly to react to critical situations. 

Eyes-free interaction. Our gesture sets are based on gross 
motor control and contain gestures that do not require 
visual assistance for performing them [7, 26, 30]. Users can 
thus stay concentrated on their primary task. From a 
technical perspective, this property is useful in wearable 
scenarios, as screens generally consume a lot of energy. 

Operations that would benefit from eyes-free input include 
“ignore interruptions” or “activate silence mode.” A limited 
number of special operations can be mapped to eyes-free 
menus. This might include informing favorite recipients 
(wife, friends) or participants of the next meeting (thus no 
need to enter the name) of a potential delay.  

Interaction Techniques for Mobile Devices 
Interaction with mobile devices entails several limitations 
due to the small size of the screen and the “fat finger 
problem” [47]. Annexing ShoeSense for off-screen input 
[41] can enhance the capabilities of the mobile device by 
separating the input and the output, and also by providing 
more degrees of freedom. 

Separating Input & Output. Inspired by [19, 20], ShoeSense 
can serve as an input device for a wristwatch (pointing task, 
command selection and widget control) given a wireless 
connection between the devices. For instance, as soon as a 
pinch gesture is detected, the user can control a cursor on 
the watch by moving the pinched hand in the air. The C/D 
gain can be adjusted with vertical movement to enhance 
precision or speed (similar to Figure 7-b). This off-screen 
interaction technique avoids occlusion on the watch screen. 
ShoeSense can also be used to select up to 5 different 
commands (Figure 7-d). Finally, users can control graphical 
widgets, for instance a slider on a wristwatch (similar to 
Figure 7-a) by touching the device (left-wrist triangle 
gesture detection) and moving the finger along the arm 
(modifying the shape of the triangle). These three 
interaction techniques are pairwise compatible with one 
another thanks to the design of the 3 different gesture sets. 

Increased Degrees of Freedom. By enabling users to 
perform mid-air input gestures, ShoeSense provides a novel 
modality for interacting with mobile devices. For instance, 
it can help to perform large distance map navigation on a 
mobile phone. The touch-sensitive surface allows for 
limited panning of the map until the finger reaches the 
screen edge. Then, instead of performing inefficient 
clutching [25], users can continue to pan “in the air” with 
large horizontal movements and zoom in/out with vertical 
movements. ShoeSense is useful for navigating in a 3D 

scene. For instance, (x,y,z)-translation of the camera can be 
performed with 3D radial gestures (Figure 7-b) and rotation 
with Triangle gestures (Figure 7-a). 

Dynamic C/D Gain Control. As previously described, the 
vertical height of the pinch gesture could adjust the C/D 
gain of cursor input to a watch device. Conversely, the gain 
of touch input can be modulated by the surface area of a 
triangle gesture: To enhance precision while touching their 
phone, users simply place their other hand on the wrist. 

Support for Accessibility 
Several projects have been proposed to support accessibility 
with visual wearable devices [10, 16, 50]. Based on this 
literature, we imagine the same possible applications for 
ShoeSense. For instance, ShoeSense could help elderly or 
disabled people (blind or partially sighted people) to be 
independent in their home or to be medically monitored 
[50]. In a multimodal approach, gestures could then be used 
to delimit the beginning and end of a speech command [10]. 
Finally, ShoeSense could recognize IR LEDs or 2D tags 
located on the ceiling, when combined with an IR or RGB 
camera [16]. Users can then be guided via audio-feedback. 

Demonstrative Scenarios 
While we focused on applications requiring relaxed and 
discreet gestures, it is also possible to imagine applications 
with large and demonstrative gestures such as motion 
capture (similar to [46]), gesture analysis (golf, baseball), or 
performance. For instance, air guitar performances [24] or 
dancing performance (inspired by Adidas Megalizer [1]). 

SOCIAL IMPLICATIONS OF SHOESENSE  
We distinguish demonstrative scenarios and everyday 
usage. In the second case, it is essential to consider the 
social acceptability of the wearable device, which is the 
primary motivation for the placement of the sensor on the 
shoe. Commercial products have demonstrated the social 
acceptability of an appropriately sized, shoe-worn sensing 
device [3]. Of potential additional concern are the privacy 
implications of an always-on camera pointing upward from 
a user’s shoe.  

The objective of ShoeSense is not to store images (as in 
[16, 21, 37, 45]), but rather to recognize hand gestures. As 
such, our prototype uses a depth camera, which has a far 



 

lower resolution than an RGB camera. Moreover, 
ShoeSense also limits the amplitude to a depth interval of 
about 40cm, making it virtually impossible to take 
inappropriate photos to identify people, or the environment. 
In a commercial realization we envision the complete image 
acquisition and recognition process to be encapsulated in a 
single-chip device that only emits the recognition result, but 
not the raw images. In this way, ShoeSense does not pose a 
serious privacy risk. Despite this technical possibility, 
concerns about privacy might still exist. Mann argues that 
fixed cameras (like surveillance cameras) are generally less 
acceptable than wearable cameras because users know they 
are not in private when somebody else is present [34]. The 
presence of the sensor could be made visually apparent with 
suitable design elements on the shoe. One way to achieve 
this is to use a bright LED, which people easily interpret “as 
an icon for an active camera” [34]. The size of the sensor 
also has an impact on social acceptance.  

USER STUDY: SOCIAL ISSUES & USABILITY 
While reducing the obtrusiveness of the sensor may improve 
social acceptance, there remains the possibility that gesturing 
in-air is a social concern. We thus designed an experiment 
intended to elicit participants’ reactions to this modality. In 
addition, we wished to evaluate our gesture sets for their 
mental and physical demand, as well as user preference. We 
sought absolute measures of social acceptability, mental and 
physical exertion. These measurements came in the form of 
a questionnaire administered after participants had performed 
all of the gestures. We further recorded users performing 
these gestures so that we could have a baseline for the 
development and refinement of our recognizer system. 

Questionnaire. The questionnaire (and the design of the 
experiment) is inspired by Rico et al. [43]. The questionnaire 
is comprised of the same questions meant to elicit social 
acceptability. Rico et al. distinguish social acceptability by 
two factors: audience (alone, partner, colleague, friend, 
family, stranger) and location (home, street, driving, 
passenger, pub, workspace). We omitted driving, because 
two of our gesture sets require two-handed interaction. 
Finally, instead of asking participants if “they would be 
willing to perform the gesture”, we used a 10-point Likert 
scale to refine the results. 

To measure physical demand, we used the Annex C of the 
ISO-9241-9 [27] providing rating scales for finger, wrist, 
arm, and shoulder effort. To measure mental demand, 
participants were asked to answer the gestural interaction 
questions of the NASA-TLX [38]. We also used a 10-point 
rating scale for these questions to increase their fidelity. 
Finally, we asked users to order gesture sets by preference. 

Gesture. We compared triangle, finger-count and radial 
gestures. The set of radial menu gestures was limited to 5, 
in order to match the number of triangle and finger-count 
gestures, and to avoid biasing effort scores. No baseline 
gesture set could completely cover the features of the 
proposed approach (always available, hands-free operation, 

no need to hold a phone, discreet). As we tried to build on 
proven components such as the common pinch and finger-
count gestures, this provides a sort of baseline. 

Procedure. To evaluate the social acceptability of the three 
gesture sets, the participants watched a video showing a 
standing actor performing each gesture in front of a white 
wall [43]. Then, participants were asked to perform the 
gesture 3 times. The experimenter observed to ensure that 
the gesture was performed correctly. After the completion 
of all gestures, the questionnaire was administered. 

Participants. 12 participants (7 female), aged from 21-37 
(m=28, sd=5.3), were recruited from the local community. 
Except two users having already played with the Xbox 
Kinect, none had prior experience with in-air gestural 
interfaces. Each received compensation of €10.  

Apparatus. A Kinect connecting to a PC was mounted onto 
the shoe of each participant. Instead of using it to recognize 
gestures, it was used to capture depth videos used later to 
develop a recognizer for these “naturally” performed 
gestures. Indeed, using a specific recognizer could have had 
a strong impact on how users perform gestures and so also 
on their ratings of those gestures on each of our scales. For 
this reason, this study is independent of a recognizer. The 
follow-up study focuses on accuracy after having improved 
our recognizer according to our observations. 

Setting. Our prototype was too large to avoid confusing 
“social comfort” when measured in public. For this reason, 
we decided to perform a lab study, focusing on the social 
acceptability of gestures sets rather than the prototype. A 
field study should be run in order to evaluate the social 
acceptability of gestures and the envisioned system in 
public.  

Design. We used a within-participant design: the order of 
the gesture sets was counter-balanced across participants 
using a Latin-square. The design can be summarized as: 
12 participants x 3 gesture sets x 5 gestures per set x  
3 repetitions per gesture = 540 total gestures performed. 
Results 
We used the Kruskal-Wallis (KW) test to analyze the non-
parametric data collected for social acceptability. 

Context & gesture set. The mean acceptance ratings across 
all contexts is above 5 for each gesture set (mRadial=7.8; 
mFinger-Count=7.2; mTriangle=5.9). The Kruskal-Wallis (KW) 
test reveals a significant effect (χ2=15.3, p<0.01) on social 
acceptability for gesture sets. Pair-wise comparisons show 
that Radial is significantly more acceptable than Triangle. 
Radial and Finger-Count gestures are rated as likely to be 
used (>5) in all contexts. Triangle is likely to be used in 
home, pub and workspace. However, a deeper analysis 
reveals that 50% (6/12) of participants would be willing to 
perform Triangle gestures in street or transport. These 
results are illustrated in Figure 8. 



 

!"

#"

$"

%"

&"

'!"

()
*+
"

,-.
++
-"

/.0
12
3)
.-" 45

6"

7)
.82
30
9+
"

!"
"#
$%
&'

"#
((

)*"&+*',(

:;"<0=>0?"

@>1A+.B9)51-"

/.>01A?+"

 
Figure 8: Social acceptability by location and gesture set (10-
point scale, 10 is the best). 95% confidence interval marked. 

Audience and social acceptability. The mean social 
acceptability score across participants indicates all gesture 
sets are acceptable in front of all audiences (mean >6) 
except Triangle gestures, in front of strangers (7 of 12 rated 
< 5). These results are illustrated Figure 9. 
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Figure 9: Social acceptability by audience and gesture set (10-
point scale, 10 is the best). 95% confidence interval marked. 

It is interesting to note that the standard deviation of the 
acceptability ratings of the triangle gestures is much larger 
than for 3D radial gestures or Finger-Count. This is true for 
both location (location: sdRadial=2.1; sdFinger-count=1.9; 
sdtriangle=2.8) and audience (audience: sdRadial=1.6; sdFinger-

Count=1.6; sdTriangle=2.6) and indicates that there was less 
consensus among participants about the acceptability of the 
triangle gestures.  

 Finger Wrist Arm Shoulder 
Radial 2.5 2.0 3.0 2.5 
Finger-Count 3.0 1.5 2.5 2.5 
Triangle 1.0 1.0 3.0 3.5 

Table 1:Physical demand (10-point scale, 1 is the best). 

Physical demand. Physical demand was rated for each 
gesture set on various body parts using Annex C of the 
ISO-9241-9 [27]. The average physical demand is low for 
each gesture set (mRadial=2.5; mFinger-Count=2.4; mTriangle=2.1). 
Details for fingers, wrist, arm and shoulder are reported in 
Table 1. The KW test (χ2 = 9.3, p < 0.01) followed by a 
pairwise comparison shows that Finger-Count (3) is more 
exhausting for fingers than Triangle (1). Three of 12 
participants indicated that extending 3 fingers was a little 
bit more “tricky”.  All other ratings are not significantly 
different from one another at the p=.05 level. 

Mental demand. Mental demand was measured using the 
NASA-TLX [38] methodology. The average mental 
demand is also quite low for each gesture set (mRadial=2.0; 
mFinger-Count=4.5; mTriangle=3.0). KW test reveals no significant 

difference of mental demand across gesture sets. 7 
participants indicated that two-handed gestures (Finger-
Count and Triangle) require more coordination. Two 
participants also indicated that extending 3 fingers requires 
more mental demand than other Finger-Count postures. 

Preference. We asked users to rank-order gesture sets by 
preference. 6 participants chose Radial as their favorite 
gesture set and 6 chose Triangle, 0 chose Finger-Count. 4 
participants chose Radial as the least favorite gesture set, 3 
chose Triangle and 5 chose Finger-Count. 

Discussion 
Social acceptability. The mean value of social acceptability 
for 3D Radial and Finger-Count is above 7 for all locations 
(except public transport) and audiences (except strangers). 
Triangle has a low acceptance rate (≤6) for the locations 
street, public transport, and for the audience strangers. The 
high standard deviation of social acceptance for Triangle is 
interesting. On the one hand, 2 participants rated Triangle 
very highly for most audiences and locations, sometimes 
higher than gestures of other types, and gave feedback that 
Triangle gestures are “very natural”, “it is like if I look at 
my watch” (adjusting a watch forms a triangle gesture). On 
the other hand, 2 participants found these gestures highly 
unacceptable: “they require too much space for performing 
gestures especially in the subway”. We observed in the 
videos that some participants performed Triangle gestures 
too high (arms were almost horizontal), requiring more 
space and more effort than needed. They probably under-
estimated the capacity of the system to capture casual 
Triangle gestures. This could partially explain this rating. 
More generally, we were surprised about the differences 
between participants in rating social acceptability and the 
reasons given. For instance, 4 participants found it 
acceptable (≥ 8) to perform gestures in the workplace 
because “I know my colleagues” while 2 participants found 
them not acceptable (≤ 3) because “workplace is serious.” 

Physical and mental demand. The three gesture sets do not 
require high physical (≤ 3) or mental (< 5) demand. Only 
Finger-Count, and especially the 3-finger posture, is a little 
bit more mentally and physically demanding. Finally, these 
results are more promising than might be expected for 
Triangle gestures (effort: 2.1; mental demand: 3.0) as they 
involved arm movements. 

Preference. Participants do not share the same opinion 
about gestures but they seem to agree that Finger-Count is 
less preferable than Radial and Triangle. Discussions with 
participants suggest that they do not like to perform 
gestures which require distinguishing between left and right 
hands, nor do they like “to think about two different gesture 
types: Pinch and Finger-Count”. More fundamentally, we 
think participants did not understand the need for a pinch 
gesture on the left hand (gesture delimitation, not explained 
to the participants) and thought this artificially increased the 
mental demand. Pilot studies we performed in the initial 
steps of this project suggested that Finger-Counting gestures 



 

without pinching were appreciated by participants (but 
risked accidental command invocation). We plan to 
investigate Finger-Count gestures without the pinch 
delimiter, by taking into account the position and 
orientation of the hand to avoid accidental activations. 

Observations for Recognizer Optimization 
After the study, we examined the depth recordings in order 
to improve our recognition algorithms. These observations 
aided in the development of the algorithms we described 
earlier in this paper: 

Pinch and Radial. The pinch “hole” was sometimes quite 
small and not always visible due to the low resolution of the 
Kinect. So a pinch is now terminated only when it is not 
detected during 3 consecutive frames to avoid false 
recognition during fast motions. This introduces a lag of up 
to 400ms, which would be reduced by increasing frame rate.  

Finger-Count. Again, the limited resolution of the Kinect 
device can sometimes make finger distinction difficult 
especially for distinguish four and five fingers due to the 
proximity of fingers. Future implementations would be well 
served to use a higher resolution sensor. 

Triangle. Our first implementation only considered the 
triangle shape (Figure 6-a). However, it appeared sometimes 
difficult to distinguish between arm and wrist triangles. To 
more reliably distinguish between these two postures we 
included end of the reference arm (Po in Figure 6-a). This 
also helps in more precisely controlling a continuous value. 

USER STUDY: ACCURACY 
The previous study investigated usability of our gesture sets 
without the constraints of using a specific recognizer. We 
now aim to validate our gesture recognizer and to determine 
a baseline gesture recognition rate, both with and without 
visual feedback, that other researchers may improve upon.  

Design. 12 novel participants (aged from 25-32 were asked 
to perform each gesture 5 times for each condition: with and 
without visual feedback. In both conditions, they were 
informed if the gesture was correctly recognized or not, but 
only in the visual feedback condition, participants saw the 
performed gesture on a screen (which was removed for 
second condition). A Kinect was installed over the 
participant’s shoe and connected to a PC to enable a higher 
frame rate. The system recognized a vocabulary of 15 
commands (5 gestures in each set). All participants had 2 
minutes of training for each set and started with the visual 
feedback condition first (to act as training for the eyes-free 
condition). The stimulus consisted of the name of the 
gesture. The order of sets was counter-balanced between 
participants.  

Results. ANOVA reveals a significant effect for gesture sets 
(F2,22=5.62, p<.001). A post-hoc Tukey test shows that Radial 
(99.0%) is significantly more accurate than Triangle (95.0%) 
and Finger-Count (94.0%). ANOVA reveals no effect on 
accuracy for visual feedback (with: 95.5%; without: 96.5%). 

Discussion 
Results show a high level of accuracy (>94%) for the three 
gesture sets. Moreover, results indicate that our gesture sets 
allow for eyes-free interaction. However, we were surprised 
about the difference with the visual feedback condition 
(with: 95.5%; without: 96.5%). The short training phase (2 
min), the order of conditions and the fact that – based on 
our observations – the participants tried to be more accurate 
in the second condition (without visual feedback) can 
explain this unexpected result. As in the previous study, we 
observed participants sometimes elect to perform less 
casual gestures in favor of accuracy, especially for Triangle. 
However, recognition performance is bounded by the 
resolution of the camera and its frame rate. As these 
improve, so too will recognition, as will the subtlety with 
which users can perform their gestures.  

MOBILITY AND FUTURE WORK 
In this article, we mainly focused on gestural interaction 
when standing. While seated, finger-count and radial 
gestures can be recognized and comfortably performed on 
the left/right side of the legs. The triangle gesture cannot be 
performed so comfortably. We plan to investigate the 
ability of ShoeSense to operate in walking or running 
scenarios. Fitzpatrick & Kemp [15] demonstrate that (1) 
while walking, one foot is always stable on the ground 
(swing phase) (2) it is possible to detect these periods of 
stability with a camera by calculating the spatial derivative, 
and (3) they can get high quality images for recognizing 
obstacles and floors. Adding accelerometers and 
gyroscopes to the prototype (as well as buttons under the 
shoe) could also help to precisely detect and measure 
periods of stability. 

CONCLUSION 
We proposed ShoeSense, a wearable system consisting of a 
shoe-mounted sensor that enables gestural input. ShoeSense 
provides an unobtrusive always-available input mechanism 
that does not constrain body movement. We presented three 
gesture sets designed for eyes-free interaction. We then 
demonstrated that these gestures can be freely combined. 
Our proof of concept implementation shows that it is easy 
to develop robust recognizers for these gestures. The 
approach enables a wide range of scenarios, especially by 
annexing visual wearable devices or by enhancing 
operations on mobile devices. 

We reported the results of two user studies. The first one 
shows promising results in terms of social acceptability, 
physical and mental demand, and users’ preference of the 
three gesture sets. It also reveals a strong variability 
concerning social acceptability and preferences of gestures 
between participants. The second study shows that the 
reference implementation is robust and that the recognition 
rate is between 94-99%, even for eyes-free operation. These 
two studies led us to conclude that ShoeSense is a viable 
option for future wearable technology and gestural 



 

interaction. The next step would be confirm these results by 
performing a field study to evaluate ShoeSense in the 
“Wild”. In particular, to investigate the ability of ShoeSense 
to operate in walking or running scenarios.  
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