Dynamics of Pointing with Pointer Acceleration

Anonymous

Abstract. In this paper we investigate the dynamics (including velocities and
accelerations) of mouse pointing when Pointer Acceleration (PA) functions are
used. We also propose a simple model for these dynamics from a control theoretic
perspective. The model allows us to simulate the effect of PA functions on pointing
dynamics. In particular, it reproduces and explains many important phenomena
we observe in pointing dynamics with PA functions. These include: (1) Pointer
position, velocity, and acceleration over time, (2) Different accelerations when
moving in different directions, and the resulting mouse drift when using PA
functions, (3) Discontinuous jumps in phase space and associated acceleration
peaks in Hooke plots when using Step PA functions. We identify parameters of
the model using a reciprocal pointing task with the mouse controlling a pointer on
a computer screen using sigmoid and step PA functions and constant gain. Our
model explains the human-computer system including the PA function as a closed-
loop dynamical system. In particular, we use a second-order model resembling a
spring-mass-damper system (second order lag). Our model explains and allows to
simulate the role of PA functions in pointing, including the phenomena described
above.

1 Introduction

The contribution of this paper is an investigation of pointing dynamics using Pointer
Acceleration (PA) functions. PA functions adjust the mouse gain depending on mouse
velocity. PA functions are implemented in all major operating systems and are used
by millions of users on a daily basis. Given their ubiquity and importance, it is very
surprising how little we know about them. Consider the simple case of pointing with the
Trackpoint under Windows. The Trackpoint microcontroller applies a force-to-motion
function to the applied force that has been optimized for pointing at text targets [20].
Windows treats the Trackpoint as a mouse and applies to the output of this function a PA
function that has presumably been optimized for mouse movements. We do not know
how these transfer functions interact to produce the final pointer movement. Similarly,
Windows ignores the resolution of mice when applying PA functions, forcing users to
reduce the resolution on the mouse microcontroller to obtain usable mouse gains. We
can reverse engineer the PA functions implemented in major operating systems [3l], but
do not know anything about their design rationale. Transfer functions are crucial not
only for Desktop settings, but also for mid-air gestures and Virtual Reality interaction
[1OU10.14L11].

In addition to analyzing pointing dynamics, we also provide a simple model of
pointing dynamics with PA functions. While our model is certainly not at the point where
it can actually be used for the optimization of transfer functions, it aims to be a first
step in that direction. At the current point, the model can quantitatively predict pointer

II

position and velocity over time with some accuracy. More importantly, it reproduces and
explains many important phenomena we observe in pointing dynamics with PA functions
qualitatively. These include: (1) Shape of pointer position, velocity, and acceleration
over time and space (2) Different accelerations when moving in different directions, and
the resulting mouse drift when using PA functions (3) Discontinuous jumps in phase
space and associated acceleration peaks in Hooke plots when using Step PA functions

2 Related Work

2.1 Traditional Understanding of Pointing in HCI

Pointing is often understood as a discrete event in HCI. A pointer is moved from a start
position to a target of a certain width W at a distance D. When the target is reached, a
delimiter, such as a mouse click, terminates the movement. Of interest is usually only
the overall movement time MT and error rate. The dynamics of the movement itself,
such as the position, velocity, and acceleration over time, of both pointer and pointing
device, are often not investigated. The model for movement time most often used in
HCl is Fitts’ law [B9]. It allows to predict movement time as MT = a+ blog, (& + 1)
in the Shannon formulation [[16]. The constants a and b are specific for a certain user
and input device, but independent from distance to and width of the target. They can be
obtained from pointing data of a user by linear regression. Fitts’ derived the relationship
from the Shannon-Hartley theorem [22]]. This theorem gives the channel capacity of a
continuous channel with Gaussian noise. Conclusions from the channel capacity to the
actual movement that takes place are not straightforward. Crossman and Goodeve [7]]
proposed an alternative derivation of Fitts’ law based on assumptions about the actual
pointer movement. They assume that pointing consists of a series of sub-movements of
equal duration and error, until the target is reached. Crossman and Goodeve do not make
further predictions about the dynamics of pointing. Meyer [[17] developed an extension
of the Crossman Goodeve model that assumes that humans optimize the durations of
sub-movements to minimize the overall movement time under noise.

2.2 Current understanding of Transfer Functions in HCI

Transfer functions map data from an input device (e.g., mouse) to the interface (e.g.,
pointer movement). As such they are an essential component of systems that enable
interaction of humans with computers. Design of transfer functions has a long history in
HCT [20/1410U1 1U14U19!18]]. The common design process of such functions is to select
a class of functions that can be parameterized with a small number of parameters. The
parameter space is then commonly searched manually by trying various parameter
settings with the TF designers themselves, their colleagues, or experiment participants.
One important case of transfer functions are pointer acceleration (PA) functions. PA
functions increase the mouse gain with increasing mouse velocity. Jellinek and Card [[13]]
performed three experiments investigating PA functions. The tested PA functions did
not result in different performance. They concluded that PA functions do not improve
performance, and would “violate Fitts’ law” if they would. They also concluded that

I

PA functions are preferred by some users because they “lower the device footprint” and
require less clutching (repositioning of the mouse).

Nancel et al. [18]] analyze transfer functions for mid-air pointing on display walls.
They present a theoretical analysis of dual-precision pointing techniques based on Fitts’
law. Further, they present detailed tuning guidelines for the parametrization of sigmoid
pointer acceleration functions.

The most thorough investigations of transfer functions in HCI are by Casiez et al. In
[6], they compare movement times in reciprocal pointing for static gains (1,2,4,6,8,12)
and six levels for the PA function implemented in Windows XP/Vista. They find that
PA results in 3.3% faster pointing, and 5.6% for small targets. They also propose a
theoretical explanation based on Meyer et al.’s stochastically optimized sub-movement
model. They denote by CDp the average gain during the ballistic phase (surge), and by
CDy the average gain during the corrective phase. They deduce that the effective ID
in motor space is ID,,; = ID +log; (éDT‘[‘)’. This formula gives an indication of why PA
functions should work. However, it suffers from two fundamental problems. First, the
effective ID ID,,,; can be reduced arbitrarily by choosing very large CDp and very small
CDy . This is not consistent with observations. Casiez et al. argue that the observed PA
functions provide lower benefits than predicted “possibly because PA results in increased
target overshooting”.

We argue it is precisely this overshooting which provides the fundamental perfor-
mance limitations of PA functions. This overshooting is a dynamic behavior which can
be modeled by control theoretical models, but not by Fitts’ law analysis.

2.3 Dynamical Systems Perspective

In contrast to modeling pointing as a discrete movement or series of sub-movements,
it has also been modeled as a dynamical system. Dynamical systems can be modeled
as differential equations, which have as a solution a prediction of pointer position over
time [23?]. For example, Jagacinsky and Flach [12] show how human pointing can be
modeled as a simple first order lag or second order lag (20L). They also show how Fitts’
law can be derived from either of these models.

The VITE model [4] is a neural network model of pointing. The model is governed
by the differential equations 4 = at(—V + T — P) and 92 = G[V]*. T (t) is the target
position, V (¢) “the activity of the agonist’s DV population”, or in other words, related to
the velocity of the end-effector, P(¢) is “the activity of the agonist’s PPC population”,
or in other words, related to the position of the end-effector. G(¢) is the “GO signal”,
which can be used to modulate the mapping from V to P. The model can be used to
predict end-effector position, velocity, and acceleration over time given a start and target
position.

Beamish et al. [2]] have extended the model with a delay term and have proven that
Fitts’ law follows from this model.

Very recently, the model has been extended to include Pointer Acceleration functions
[24]. It was shown that the resulting model is stable under any PA function, and theoreti-
cal performance bounds of the model have been derived. The main difference of that
work to our paper is that Varnell and Zhang’s work analyzes the theoretical properties of
their model. While proving stability and performance bounds of models is a core task in

v

control theory, it is less directly applicable to HCI. In practice we don’t observe unstable
human-computer system behavior (e.g., wild oscillations of mouse users). In contrast,
our work is of more empirical nature. We present a dataset of actual user behavior, a
model of pointing with PA functions that can replicate phenomena we observe in that
dataset, a system identification process that can learn parameters of the model from the
dataset, and an analysis of model behavior in comparison to user behavior.

1/Mass R

1|t
3 (1)
Pointer PonterPosiion

Acceleraion pycica Velocty Pointer Position

Integrator

Velocity Virtual
Integrator

| »(2

T &D)
s Pointer Velocty
Physical

Integrator 2

1/Mass L

— Pointer Acceleration
Derivative

Mouse Position

Fig. 1. Our control theoretical model of pointing with a Pointer Acceleration function. The model
predicts pointer position, velocity and acceleration as well as mouse position over time given
a target position. The model can loosely be interpreted as switching between two spring-mass-
damper systems depending on the movement direction of the pointer. Further, the velocity of the
system gets modified by a nonlinearity within the loop, the Pointer Acceleration function, breaking
the strict spring-mass-damper interpretation.

Logitech G502 - Logitech M-UAS 144 - Razer DeathAdder Chroma " Dell

AR
| HIYHT
“H\H
I
I

PPy
x | |}
h '

!

(

4
W

Velocity (mickeys/sample)
Velocity (mickeys/sample)
Velocity (mickeys/sample)

Velocity (m

W

v

Mouse Position (mickeys) Mouse Position (mickeys) Mouse Position (mickeys) Mouse Position (mickeys)

Fig. 2. Noise for different mice. Logitech G502, Logitech UAS144, Razer DeathAdder, and a Dell
mouse, respectively. The noise gets amplified by PA functions. In case of Step PA functions, the
gain might even oscillate at noise frequency if mouse velocity is close to the threshold.

3 Mouse Noise and PA Functions

The analysis of pointing dynamics and transfer functions is complicated by sensor noise.
Mouse data is very noisy. Furthermore, different mouse models exhibit widely different
noise characteristics. Raw mouse data (phase space plot: velocity plotted over position)

v

for four commercial mice is shown in Figure [2| While the Logitech G502 exhibits a
relatively clean and high-resolution velocity profile, velocity spikes appear at changing
regular rates. The Razer DeathAdder has a similarly high resolution sensor, but exhibits
much more high frequency noise. The velocity bump at the beginning of the movement
remains inexplicable. More conventional mice like the Logitech UAS144 have much
lower resolution. Also, the mouse seems to loose tracking accuracy at high velocities.
For everyday pointing, this noise is usually not noticeable, because the integration of
pointer velocity to position smoothes noise out. However, for the analysis of pointing
dynamics, this noise is critical. Furthermore, the noise gets increased considerably when
using PA functions, because velocity spikes get multiplied with a higher gain factor.
When using Step PA functions, the gain can even oscillate between low and high gain
with the noise frequency. To address this issue, in this paper we apply a median filter and
a second order IIR low-pass filter to the mouse velocity before applying the PA function.
In practice, this would not be done because it makes the selection of individual pixels
more difficult. For the analysis of pointing dynamics, especially using PA functions, this
step is however necessary to be able to see the patterns in the noise.

Sigmoid Step Constant 3 Constant 5

Position (m)

Position (m)

-
~
°

T\m’t‘:’ (s) : * ” TI"\‘CM (s) ” * ” Tm:r‘:l (s) : * ’ T\mé (s)

Fig. 3. Overview of time series of pointer position for all participants using the different transfer
functions.

4 Dataset

We captured data using the serial pointing task (8], where a user clicks alternatingly at
two one-dimensional targets. To improve replicability, we will release the dataset and
model of this paper when it is published.

4.1 Method

Participants 12 unpaid participants (3 female, mean age 30.6 years (SD 8.1), all normal
or corrected to normal eyesight, all expert computer users) participated in the study.
They had on average 16.4 years (SD 6.5) of experience of mouse use, and currently
used a mouse on average for 37.6 hours (SD 31.6) per week. While one participant was
left-handed, all preferred to use the mouse with the right hand and used the right hand in
the experiment.

VI

Task and Materials Two one-dimensional targets were displayed. The task was to click
on the targets serially. A new trial started as soon as the user clicked on the previous
target. Missed trials were not repeated, but annotated in the dataset.

The condition of the experiment is pointer acceleration function. The pointer acceler-
ation function is varied between blocks, but kept constant within each block. We cover
4 different pointer acceleration functions. The sigmoid function provides a gain of 3
when the mouse velocity is below 10 cm/s, and a gain of 5 when the mouse velocity
is above 30 cm/s. Between these points, the gain increases linearly. The step function
switches instantly between gains 3 and 5 at 20 cm/s. In addition, constant gain of 3
and 5 was tested. These TFs were selected for their simplicity and because they are the
classical examples of PA functions. We did not test PA functions implemented in current
operating systems because such results might be outdated soon. We chose the parameters
to be consistent between the different functions and be usable for pointing in an iterative
tuning process. Each condition is repeated for 50 trials. The order of conditions was
counterbalanced using a Latin square.

Procedure Users were asked to adjust table, display and mouse pad to their preferences.
All users were resting their palm on the mouse pad. Participants were introduced to the
task and completed a training phase for all conditions before starting the experiment.
Users trained for 10 trials in each condition. Users took a break after each condition.
They were asked to stretch their limbs and relax briefly. Users were asked to adjust
mouse position in the first trial of each condition and to avoid clutching during the
experiment. To enable this, we used a very large mouse pad (900x450mm). Users were
asked to click on the targets as quickly as possible while maintaining an error rate of
below 5%. Targets were shown at a distance of 35.98 cm (1300 px) with a target width
of 1.38 mm (5 px), leading to an index of difficulty (ID) of logg(% +1) =8.028.

Apparatus Data was captured on a Dell Precision 7810 PC with an AOC G2460PQU
monitor (24", 1920x1080 px resolution, 140 Hz, no Vsync). The Logitech G502 mouse
was used with no additional weights. The software used [1ibpointing.org [S] for
accessing the raw mouse data, instead of using the mouse data that is provided prepro-
cessed by the operating system. The raw mouse data was filtered with a median filter
with window size 3 to filter outlier samples (visible for Logitech G502 in Figure[2). The
resulting signal was filtered with a low-pass IIR filter with a critical frequency of 15 Hz
and a quality factor of 1. Meaningful frequencies in human movement are below this
frequency [21], so that they were preserved in the signal. Filtering was performed to
remove high-frequency noise components in the mouse, which would otherwise hinder
the investigation of the impact of pointer acceleration functions on pointing dynamics.
OpenGL (glfw3) was used for low-latency graphics generation. The program was run-
ning at approximately 2000 Hz, such that the frequency of the overall apparatus was
limited by the 140 Hz of the monitor. Mouse events were logged as they were delivered
to the program by libpointing. Data was captured under Microsoft Windows 10. Latency
was measured with a Sony DSC-RX10M2 camera at 1000 FPS. The mouse was hit with
a hard object at high speeds, and the number of frames from impact to pointer motion

libpointing.org

VII

on the display was counted. The latency was 25 ms. The x-dimension of the mouse was
used to move a white crosshair pointer (1px wide) that only moved horizontally.

4.2 Preprocessing

In order to facilitate further analysis, data was preprocessed. We dropped the first 20 trials
from each condition. This was done to remove trials where substantial learning of the
new PA function was taking place. Naive calculation of derivatives (pointer acceleration)
from mouse movement data would greatly increase any remaining noise in the signal.
Therefore, we filter the pointer velocity using a Savitzky-Golay filter with a 4th degree
polynomial and a window size of 21 samples (20ms) to calculate pointer acceleration
as the st derivative of pointer velocity. We used the same filter to calculate mouse
acceleration from mouse velocity as filtered in the apparatus.

S Summary Statistics

Figures 3 4} and [5] provide an overview of the dataset. Figure [3] shows the pointer
position over time for all participants and all trials separated by PA function. In this
visualization it is very difficult to detect differences between the functions. The only
visible difference is that with constant gain 3 there seems to be less overshooting of the
target. Figure] shows the pointer velocity plotted over pointer position (left column)
as well as mouse velocity plotted over mouse position (right column). Because position
and velocity determine the state of an inertial (second order) system, this visualization is
called a phase space plot for such systems. The differences between the PA functions
become much more obvious in this visualization. In particular, the phase space plot for
the Step PA function is very different from the others. Whenever the velocity crosses the
step, there is a sudden jump in pointer velocity.

The center parts of the individual curves seem simply to be “lifted” up from their
normal elliptical shape. Figure [5] shows the pointer acceleration plotted over pointer
position (left column) as well as mouse acceleration over mouse position (right col-
umn). This type of visualization is called a Hooke plot. The individual acceleration
and deceleration spikes when using the Step PA function are clearly visible. Although
the acceleration when crossing the step happens instantaneously, it is smoothed in this
plot. This is because the acceleration is calculated from a polynomial approximation
of velocity to manage noise. Also the Sigmoid PA function creates acceleration and
deceleration spikes (although smoother) that can be seen when following individual
trajectories. The isolated spike in the plot for constant gain 5 is the only clutching event
in the data.

Figure[6]shows the maximum pointer velocities achieved in the experiment, separated
by PA function and whether the movement is to the left or to the right. Figure [6] shows
the maximum pointer accelerations achieved in the experiment, separated by PA function
and whether the movement is to the left or to the right. It can be seen that the PA
functions achieve higher accelerations than constant gain. Maximum acceleration of the
Step PA function is infinite and therefore not shown. The surge movement denotes the
initial (often ballistic) movement towards the target. We calculate the surge movement

Sigmoid . .
1 08 Sigmoid
12
N\ SN
10 . 0.6 \
— \ —
2 2
= e 0.4
=
26 2
38 ©
T 4 O o2
> [}
>
2
0.0
0
2 -0.2
-0.1 0.0 01 0.2 0.3 0.4 0.5 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Position (m) Position (m)
Step
14 07 Step
12 0.6
10 0.5
& —
E 8 Q) 0.4
= S
~ 03
26 >
= =
8 8 0.2
o 4 °
> > o1
2
00)
0 —01
2 -0.2
-0.1 0.0 01 0.2 0.3 0.4 0.5 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Position (m) Position (m)
10 Constant 3 1o Constant 3
8 08

Velocity (m/s)
B

Velocity (m/s)

0.0
- -0.2
-005 000 005 010 015 020 025 030 035 040 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Position (m) Position (m)
" Constant 5 08 Constant 5
12 . 0.7 -
10 : 06
i o 05
g g
E E
X >
g =
g, g
s 2 o2
2 0.1
o 00
-2 -0.1
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.00 0.02 0.04 0.06 0.08
Position (m) Position (m)

Fig. 4. Overview of phase space plots for all participants using the different transfer functions. Left
column shows pointer velocity over pointer position, right column shows corresponding mouse
velocity over mouse position. Note how the pointer profiles for the Step TF are “lifted up”. Also,
the endpoints of mouse profiles with PA functions have more variance.

IX

& Sigmoid 15 Sigmoid
60
10
8 «
< <
€ 20 @£ 5
E E
c 0 c
2 o o
= =1
o 20 o
o o
8 -40 8 -5
Q Q
< -60 <
-10
-80
-100 -15
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Position (m) Position (m)
100 Step 10 Step
50 5
N ~
< <
2 Ky
S
E o E o
c c
<] 2
= =
[[
T 50 § 5
< 100 <o
-150 -15
-0.1 0.0 0.1 02 03 0.4 05 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Position (m) Position (m)
20 Constant 3 10 Constant 3
20
5
~ ~
DTS &
" "
2 2
E E o
£, =
jo c
2 2
=1 =1
@ -10 [
2L 2
3 3
o 0 o
< < -10 .
-30 -
-40 -15
-005 000 005 010 015 020 025 030 035 040 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Position (m) Position (m)
© Constant 5 15 Constant 5
40 10

N
5]
a

Acceleration (m/s"2)
g o

Acceleration (m/s"2)

I
IS
S
I
i
1S5

~60 -15
0.1 00 01 03 04 05 0.00 002 0.04 0.06 008

0.2
Position (m) Position (m)

Fig. 5. Overview of Hooke plots for all participants using the different transfer functions. Left
column shows pointer acceleration over pointer position, right column shows corresponding mouse
acceleration over mouse position. The Step PA function creates infinite acceleration when the
velocity crosses the Step (peaks smoothed here due to filtering). These peaks are still visible in the
Sigmoid TF, but smoother.

20 Maximum Velocity of Pointer » Maximum Acceleration of Pointer
35 70
3.0 ~ 60
— »
éz.s N T T - B e
o | LT T g0 7
Lonnn - -
e L] L1 OO L ugEF%zo - - 7
i . 1 i Q —
oo | SR S - G — l;l %‘
05 - 0 - - - i
0.0 -10 . .
(Sig.L) (Sig.R) (Step) «_SKD R (8] @R) . L)_ BR) (sigl) (Sig.R) L.H) GR) L':\) . 5R)
(Transfer Function, Movement Direction) (Transfer Function, Movement Direction)

Fig. 6. Left: Maximum velocity of pointer separated by TF and movement direction. The PA func-
tions reach higher velocities compared to constant gain. Right: Maximum pointer accelerations
separated by TF and movement direction. Pointing with the Sigmoid PA function reaches higher
accelerations than static gain. The Step PA functions creates infinite acceleration when crossing
the step and is therefore not shown.

from mouse acceleration as follows. The point where the deceleration is larger than
—0.5m/ 52 is detected. From there, the next point with zero acceleration is found, which
we use as the end of the surge movement. Figure [/| shows the surge endpoints as a
fraction of the overall distance to the target. Figure[7]shows the overshoot of targets by
TF and movement direction. It can be seen that the target is often overshot by only a few
millimeters.

We performed a number of statistical tests comparing characteristics of the individual
trials by TF. A Friedman test revealed a significant effect of TF on maximum velocity
(x*(3)=404.04, p < 0.01). A post-hoc test using Wilcoxon tests with Bonferroni cor-
rection showed the significant differences between all pairs of TFs except Step PA and
Sigmoid PA (p<0.01). A Friedman test revealed a significant effect of TF on maximum
acceleration (y%(3)=760.21, p < 0.01). A post-hoc test using Wilcoxon tests with Bonfer-
roni correction showed the significant differences between all pairs of TFs. A Friedman
test revealed a significant effect of TF on mean velocity (y%(3)=760.21, p < 0.01). A
post-hoc test using Wilcoxon tests with Bonferroni correction showed the significant
differences between all pairs of TFs except Step PA and Sigmoid PA, and constant gain
3 and Step PA (p<0.01). A Friedman test revealed a significant effect of TF on over-
shoot (¥%(3)=17.998, p < 0.01). A post-hoc test using Wilcoxon tests with Bonferroni
correction showed the significant differences between constant gain 3 and 5 (p<0.01).
A Friedman test revealed a significant effect of TF on surge endpoint (y*(3)=44.387, p
< 0.01). A post-hoc test using Wilcoxon tests with Bonferroni correction showed the
significant differences between all pairs of TFs except Step PA and Sigmoid PA and
Sigmoid PA and constant gain 5 (p<0.05). We did not find an effect of PA function on
trial time (Friedman, y2(3)=6.137, p > 0.05).

XI

. ,Surge Endpoint as Fraction of Distance Overshoot over target in m

,i
2
|
o
5
2
S

; : 8 0.008 _
£ —_
@ —
© 0.006
>
o
! : 0.002 D ‘ ‘
) s - 0.000 o
S0 sam cwh SR G0 R = R o cem el mpw m \m 50 &R

(Transfer Function, Movement Direction) (Transfer Function, Movement D|rect|on)

1)

Fraction of Distance
o N

o
®

0.7

Fig.7. Left:The surge denotes the initial ballistic pointer movement with a N-shaped acceleration
profile at the end of which the acceleration drops to 0. The plot shows the endpoints of this ballistic
movement as a fraction of distance to the target. Right: Overshoot denotes the amount by which
the target is overshot at the maximum.

6 Control Theoretical Model of Transfer Functions

6.1 Modelling Process

We developed the model in an iterative process. In each iteration, the experimental design
and apparatus were updated, data collected, data analyzed, the model designed, the model
simulated, and model behavior analyzed. We iterated individual phases as well as the
whole cycle. Key aspects of iteration were: selection of conditions and parameterization
of PA functions, filtering of mouse data to detect phenomena caused by PA functions,
detection and presentation of phenomena, and model design. The key tradeoff in the
model design is between predictive accuracy and model complexity. For this paper, we
decided to present the simplest possible model that can replicate the phenomena we are
interested in to a satisfactory degree.

RMS on Position by PA Function 06 RMS on Velocity by PA Function

RMS on Acceleration by PA Function

i
=1k T = L o=

- - = =

o

o

@
@
S

o

=)

®
a
S

- 05

] b

3 : 0.1 0
Sigmoid Step Constant 3 Constant 5 Sigmoid Step Constant 3 Constant 5 Sigmoid Step Constant 3 Constant 5
Gain Gain ID

=4

o

N
IS
S

o

>
@
S

RMS in m/s
o
w

RMS in m/s?

RMS in m
=4
°
8

=4

=)

&
N
=]

=3
)

=4
o
R
=)

Fig. 8. RMSE of position (top left), velocity (top right) and acceleration (bottom) between model
and user behavior for the Sigmoid PA function, Step PA function, constant gain 3 and constant
gain 5.

XII

6.2 The Model

Our model of pointing dynamics with PA functions (Figure) is a switching controller,
switching between two second order lag (20L) controllers based on movement direction.
Additionally, between the two integrators (at the mapping from mouse velocity to pointer
velocity), a non-linear pointer acceleration function is introduced. This PA function
changes the gain based on mouse velocity. The PA function is implemented as a lookup
table, which linearly interpolates between table points.

The model can be interpreted from a physical perspective. In this perspective, the
pointer is interpreted as consisting of a mass m, a spring k3, and a damper k. The
spring can be thought of being attached to the target (in the user’s mind) and the pointer.
This spring then exerts a force on the user’s arm that is proportional to the distance
between pointer and target (consistent with Hooke’s law). The motion of the pointer
is damped, similar to friction which exerts a force on the arm that is proportional to
the velocity of the pointer and opposes the direction of movement. These forces are
added and translate into acceleration of the arm according to Newton’s second law
F = ma. The parameter 1/m is called k; in the model. The arm/mouse acceleration is
then integrated to yield mouse velocity. Mouse velocity is then fed into the transfer
function. The transfer function translates mouse velocity to pointer velocity by applying
a speed dependent gain. This pointer velocity then gets multiplied with the damping
parameter k» and exerts a proportional negative force on the arm. The pointer velocity
also gets integrated to yield pointer position. The pointer position gets multiplied with
the spring parameter k3 and exerts a proportional force in the direction of the error. In
summary, model behavior for moving in one direction can be given by the differential
equation k;y = (target — k3y) — koy, where y is the pointer position. The parameters ki, k»
and k3 are different depending on movement direction. The model discretely switches
between the parameter sets depending on the velocity being above 0 (movement to the
right) or below (movement to the left).

The model directly corresponds to the equilibrium point hypothesis of motor con-
trol [21]]. In this hypothesis, it is assumed that the brain only sets the target position
(“equilibrium point”) of the system. The feedback loops and parameters are thought
of describing the mechanical properties of the biomechanical system and reflex loops.
Alternatively, it can be thought that the brain computes the error and controls the force
exerted on the muscles directly. In any case, the model describes the overall system of
brain, biomechanical system, reflex loops and computer, and the boundaries between
these modules can be drawn in the model in many different ways.

6.3 Model Implementation

We implement the model in Simulink as a block diagram. Simulink is a Matlab extension
that allows simulation of linear and non-linear systems. Because the transfer function
introduces a nonlinearity inside the feedback loop, simulation of the system is not as
straightforward as with linear systems, such as a pure 20L. The discontinuous nature
of the switching control and the transfer function influence the choice of solver for the
model. We chose a fixed-step solver (odeS, Dormand-Prince) with a step width of 1 ms
to simulate the model.

XIII

_Sigmoid ‘ ‘ __ Step
02+ 02+
[[['
01| ‘ | ; 1 oaf \ ~ \ ‘I
il 1€ || \ ‘\
§ ol | § 0 | | «
3 ; ~ \ \ 3 ‘
o ‘ | | o |
01H \ -0.1 |
02f B o -0.2T Wi
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
Qonstant 3 ‘ Constant 5
02f N A o.zL ~ ~
| | | |
01f | | / | 11 0.1-] | [I
§ off \ ‘ \ ‘ 8 of \ \
2 | ‘ l “ 2 \ \ \ .‘ f
o | | || I | |
ot | | | \i o1 | |
02} va \va 7] -0.2{ - 1A .
0 2 4 6 8 10 0 2 4 6 8 10
Ti_me (s_) Time (s)
0.15 i Sigmoid 015 Stgp
0.1 01
LT N) - | |
‘ ‘ NN A M 11 1 [
B ’yj “" Eo.os‘”‘];\{/‘ ‘ \ | \ \‘1‘
c c {1 |
goos |||) § Il\ | |
or l\ \ \ ’ -0.05
-0.05 . : : : 0.1 - : : : : : :
0 10 20 30 40 50 0 5 10 15 20 25 30 35 40
Time (s) Time (s)
0.14 'Colr::‘vfa:t 3 i i 0.08 Colr::‘fa:t 5 i
0.12 J 1 1 N A A ‘ J ‘ \ \‘ | \ J
‘ 1 Il f (0.06 (VT
00NN =N AR
£ 008 | L L] 20.04\ |
S o006 |||] r L L] i S ((1] ‘ ~] ‘
§o.04‘] '} r \ r[\r H & 002 ‘ \\ H‘\
IR | | | ‘ |]
0.02 IRIRIRL \ | | \w ‘ I | } ‘
. l \ 1R \1 | | ‘ ‘j 0 Uy
02T 10 15 20 25 30 35 40 % 5 10 15 20 25 30 35 40
Time (s) Time (s)

Fig. 9. Top: Time Series of pointer position predicted by the model (blue), as well as the actual
pointer position (red) for an average user. The target position is shown for orientation (yellow).
Bounds of the targets are shown as horizontal colored lines (ID 8). The model can predict the
position over time of the pointer rather well. However, no apparent differences in the dynamic
behavior with the four transfer functions are visible in the time series. Bottom: Time Series of
mouse position predicted by the four models (blue), as well as the actual mouse position (red) for
one average user. It can be seen that the mouse of the user (red) is drifting considerably when
using a PA function, but not with a constant gain. The reason for this is that users reach different
velocities when moving left vs. right. Because the PA function increases the gain as a function of
velocity, the mouse is drifting into the direction where higher velocities are reached. This effect is
stronger for the sigmoid PA function than for the step PA function.

XIV

6.4 System Identification Process

The 20L model has three free parameters for each direction (mass 1/k;, spring ks,
damping k»). These parameters need to be adjusted to fit the experimental data. This
process is called System Identification. There exists a comprehensive literature on System
Identification with a wealth of methods specialized for identifying specific classes of
systems [[15].

Because the transfer functions introduce a nonlinearity in the model, the parameters
are difficult to identify using classical system identification techniques. Therefore, we
resorted to a very general technique based on simulation and optimization. In this
technique, an optimizer aims to identify the parameter set that minimizes the error
between the model and experimental data. The objective function determines which
aspects of user behavior the model is fit to. As objective function we use the sum of
sum squared errors (SSE) between actual pointer position, velocity and acceleration, and
simulated pointer position, velocity, and acceleration, over time.

As optimizer, we used the Simplex search method as implemented in the Matlab
fminsearch function.

We split the experimental data into a training and a test set. For each PA function,
we use the first half of trials for training, and the remaining half of trials for evaluation.

7 Results

7.1 Model Accuracy

Figure [9] shows the actual and predicted pointer position over time. It is clear that
regardless of the PA function used, our models are able to predict the pointer position
over time rather well. However, in order to detect differences in the dynamic behavior
between different PA functions, velocity and acceleration of pointer position must be
investigated. Figure[§|shows the root mean square error (RMSE) between pointer position,
velocity, and acceleration over time as predicted by the model and observed from the
participants. The models do not predict acceleration using the Step PA function well. This
might be an artifact of our evaluation procedure. For the user, acceleration is calculated
from a polynomial approximation of pointer velocity, smoothing out discontinuous
acceleration spikes. For the model, pointer acceleration is calculated directly.

7.2 Model Parameters

Table [I] shows the model parameters identified from the pointing data through the
optimization process. When interpreting the model as a spring-mass damper system,
the parameter k| can be interpreted as the inverse of the mass (e.g., of the arm) 1/m.
Similarly, parameter k» can be interpreted as the damping, and k3 as the spring pulling
the arm to the target. The damping does not seem to be changed between left and right
movements. The lower constant gain 3 is counterbalanced with lower mass (m = 1/k)
compared to gain 5. This can be interpreted as the model adjusting to the PA function
and changing its parameters accordingly. Similarly, we can expect users to change their
behavior as we change the PA function.

PA Function Sigmoid Step Constant 3 Constant 5
k11 2.59(0.33,5.93) | 2.77(0.33,5.86) | 3.26(0.39,9.64) |2.71(0.48,6.12)
KIr |5.78(2.78,14.06)|5.49(3.49,13.17)|5.42(3.37,11.33)[5.14(2.55,8.91)
k21 0.28(0.11,0.43) | 0.26(0.11,0.41) | 0.29(0.13,0.44) |0.28(0.13,0.39)
K2r 0.29(0.15,0.47) | 0.28(0.17,0.45) | 0.36(0.22,0.47) |0.32(0.20,0.43)
K31 1.90(0.97,4.18) | 1.91(0.95,4.30) | 1.92(0.89,5.45) |2.20(0.88,5.23)
k3r 1.04(0.76,1.42) | 1.10(0.76,1.46) | 0.99(0.80,1.61) {0.92(0.77,1.12)

XV

Table 1. Identified Model Parameters. Given are mean(min,max) for each PA Function.

7.3 Mouse Drift

Movements in different directions achieve different velocities. This creates problems
when PA functions are used. Movement in the faster direction gets amplified by higher
gains, which results in less distance covered by the physical mouse. When the user is
moving the pointer back to the original position at lower speed, the mouse needs to cover
more space because of the lower gain of the PA function. Over time, the mouse is thus
drifting, creating the need to clutch because of the limited workspace. This behavior gets
replicated by the model. Figure [9]shows the actual mouse position (red), as integrated
from mouse displacements, and the mouse position predicted by the model (blue) over
time. It can be seen that with static gain, neither actual nor predicted mouse positions
drift. With both PA functions, both actual and predicted mouse position drift considerably.
The drift is larger for the Sigmoid function, because differences in gain are integrated
over more different velocities, and therefore more time. It should be noted that the model
is not trained on the mouse movements, but only on the resulting pointer movements.
Thus, mouse drift is an emergent property of the model and does not exactly replicate
user mouse drift.

7.4 Phase Space Behavior

Figure [T0]shows the phase space plots for the two PA functions and two constant gains.
In these plots, pointer velocity is plotted over pointer position. For constant gain, a
symmetric phase space plots (e.g., almost half-circle) indicates an open-loop movement,
in which acceleration and deceleration are equally steep. During open-loop movements,
visual feedback does not influence the motion. Closed-loop movement, in which the user
adapts the deceleration phase according to visual feedback, is often characterized by
asymmetric phase space plots (e.g., half-egg shaped). The acceleration is steeper, while
the deceleration more gradually homes in on the target. The control model presented
in this paper represents closed-loop control. In the above plots it becomes clear that
PA functions introduce distortions in phase space plots that do not appear in physical
(constant gain) behavior. In particular the step PA function contains discontinuities that
do not appear otherwise. The center section of the plot is practically “lifted up”” where
the velocity crosses the threshold. This effect is also replicated by the model.

XVI

Sigmoid Step

(&=

5
-02 -015 -0.1 -0.05 0 005 0.1 015 02 -02 -015 -0.1 -0.05 0 005 0.1 015 02
Position (m) Position (m)
Cc Cc 1t5

Velocity (m/s)
Velocity (m/s)

. 05

-02 -015 -01 -005 0 005 01 015 02 -02 -015 -01 -005 0 005 01 015 02
Position (m) Position (m)

Sigmoid Step

500

20 -

Acceleration (m/sz)
o

Acceleration (m/sz)
o
%

-10
-20
-30 -
-40 cd -500 L L L L " " L
-0.2 -0.15 -0.1 -005 O 005 0.1 015 0.2 -02 -015 -0.1 -005 0 0.05 01 015 0.2
Position (m) Position (m)
15 Constant 3 30 Constant 5
10 20
< 5f < 10f
2 2
E E
c 0 c O
kel kel
® ®
T 5 5 -10+
© ©
3] 3]
<-10r <-20F
-15 -30

20 . . . 40 . . .
-0.2 -0.15 -0.1 -005 0 005 01 015 0.2 -0.2 -015 -0.1 -005 0 005 01 015 0.2
Position (m) Position (m)

Fig. 10. Top: Phase space plot of pointer velocity predicted by the models (blue), as well as phase
space plot of the actual pointer (red) for one average user. For the Step TF, there is a jump in velocity
when the velocity crosses the step both during acceleration and deceleration. This phenomenon
is replicated by the model (blue). Bottom: Hooke plots of pointer acceleration predicted by the
model (blue), as well as the actual pointer acceleration (red). The reached acceleration is higher
than for constant gain. The Step TF results in steep acceleration and deceleration spikes when
the velocity crosses the step. This behavior is replicated by the model. For constant gain 3, this
user shows two acceleration spikes per movement. One hypothesis might be that this user starts to
accelerate the mouse, but only overcomes the static friction of the arm on the table slightly later,
resulting in a second acceleration spike.

XVII

7.5 Hooke Plots

Figure [I0] shows the Hooke portraits of all transfer functions. In these plots, pointer
acceleration is plotted over pointer position. It can be seen that the user Hooke portraits
are approximately N shaped, which is indicative of the high ID used in the task [3]. With
low ID, one could expect a more backslash (\) shaped Hooke plot, indicating oscillatory
behavior. While the user Hooke plot is relatively symmetric N shaped, the model deviates
from the user by a more asymmetric shape. The momentary increase in acceleration is
indicative of the second order of the model (two chained integrators), where the model
can switch acceleration (but not velocity or position) instantaneously, e.g., when the
target switches. The acceleration then falls gradually as the pointer approaches the target.
The most obvious impact the Step PA function has are the discontinuous acceleration
and deceleration spikes when the velocity crosses the step. The model replicates these
spikes, however in different positions than the user, because the model underestimates
pointer velocity (see Figure[T0).

8 Discussion

Our model can predict pointer position over time with some accuracy, while there
are systematic deviations from user behavior in velocity and especially acceleration.
More importantly, it qualitatively reproduces phenomena that appear in human pointing
behavior with pointer acceleration functions. These include the discontinuous phase
space plot and acceleration spikes in Hooke plot when using Step PA functions. Also the
mouse drift when using PA functions is explained and predicted qualitatively, although
not quantitatively (the quantity of mouse drift differs between model and user).

There exist numerous opportunities for improving the model. In particular, the
systematic deviations from user behavior regarding velocity and acceleration behavior
warrant further investigation. Perhaps most importantly for the case of simulation of PA
functions, the model systematically underestimates user velocities. This will result in
the application of PA gain at different moments compared to the user. For example, in
Figure|10} we see that the Step PA function switches gain at different moments from the
actual data. This and other issues should be addressed in future work.

More generally, modeling and simulation of pointing dynamics is important for
HCI for a variety of reasons. First, the phenomena of pointing dynamics are very fast
(in the order of milliseconds), so that they are less accessible to human intuition than
slower phenomena in interaction. This might also explain why pointing dynamics has
not received very much attention in HCI to date. Second, many inputs and outputs of
the human-computer system are not be easily accessible, or the phenomena of interest
are obscured by noise. For example, due to the noisy mouse sensor, mouse and pointer
acceleration are difficult to investigate, because phenomena are obscured by noise in
mouse motion data. Third, there is considerable variability in human pointing dynamics.
In order to detect patterns and phenomena in dynamics, many trials are necessary,
increasing the cost of experiments. Simulations of pointing dynamics can be used in
an exploratory way to predict phenomena that can then be validated or refuted by
experiments.

XVIII

Computational modeling of PA functions and their simulation might ultimately lead
to the ability to computationally optimize PA functions and other transfer functions. This
might ultimately lead the field of HCI to conducting more simulations of interaction.
However, given the model developed in this paper, we are still quite far from that vision,
and it can be seen merely as a first step towards this long-term direction.

At the current step, the model can be seen as more of a tool for thought and inspiration.
It shows that we can computationally understand and simulate the effect of PA functions
on pointing. In particular, it provides researchers, practitioners and students a concise
way of thinking about PA functions. This might help to understand the way PA functions
influence the pointing process more deeply. It provides a common vocabulary and
conceptual framework for discussing and integrating knowledge about phenomena
related to PA functions. It can help in the generation of research questions and hypotheses,
and conceptually guide the design of PA functions. We hope that control theoretical
modeling of human-computer interaction will become an important research direction
for HCI in the future.

9 Conclusion

We have proposed a control theoretical model of pointing dynamics using PA functions.
This model allows us to simulate and quantitatively predict pointer position, velocity
and acceleration over time and space using PA functions with some accuracy. More
importantly, it qualitatively reproduces and provides an explanation for many phenomena
that occur in pointing dynamics using PA functions. These include the discontinuous
phase space plots and isolated acceleration spikes in Hooke plots when using Step PA
functions. Also mouse drift when using PA functions is computationally explained.
More importantly, the model provides a tool for thought and a consistent vocabulary for
thinking and talking about PA functions.

References

1. Barrett, R.C., Selker, E.J., Rutledge, J.D., Olyha, R.S.: Negative inertia: A dynamic pointing
function. In: Conference Companion on Human Factors in Computing Systems. pp. 316-317.
CHI ’95, ACM, New York, NY, USA (1995), http://doi.acm.org/10.1145/223355|
223692

2. Beamish, D., Bhatti, S.A., MacKenzie, 1.S., Wu, J.: Fifty years later: a neurodynamic
explanation of fitts’ law. Journal of The Royal Society Interface 3(10), 649-654 (2006),
http://rsif.royalsocietypublishing.org/content/3/10/649

3. Bootsma, R.J., Fernandez, L., Mottet, D.: Behind fitts law: kinematic patterns in goal-directed
movements. International Journal of Human-Computer Studies 61(6), 811-821 (2004)

4. Bullock, D., Grossberg, S.: Neural dynamics of planned arm movements: emergent invariants
and speed-accuracy properties during trajectory formation. Psychological review 95(1), 49
(1988)

5. Casiez, G., Roussel, N.: No more bricolage!: Methods and tools to characterize, replicate and
compare pointing transfer functions. In: Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology. pp. 603-614. UIST "11, ACM, New York, NY,
USA (2011), http://doi.acm.org/10.1145/2047196.2047276

http://doi.acm.org/10.1145/223355.223692
http://doi.acm.org/10.1145/223355.223692
http://rsif.royalsocietypublishing.org/content/3/10/649
http://doi.acm.org/10.1145/2047196.2047276

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.
22.
23.

24.

XIX

. Casiez, G., Vogel, D., Balakrishnan, R., Cockburn, A.: The impact of control-display gain on

user performance in pointing tasks. Human—computer interaction 23(3), 215-250 (2008)

. Crossman, E.R.EW., Goodeve, P.J.: Feedback control of hand-movement and fitts’ law. The

Quarterly Journal of Experimental Psychology 35(2), 251-278 (1983)

. Fitts, PM.: The information capacity of the human motor system in controlling the amplitude

of movement. Journal of Experimental Psychology 47(6), 381-391 (1954)

. Fitts, PM., Peterson, J.R.: Information capacity of discrete motor responses. Journal of

experimental psychology 67(2), 103 (1964)

Frees, S., Kessler, G.D., Kay, E.: Prism interaction for enhancing control in immersive virtual
environments. ACM Transactions on Computer-Human Interaction (TOCHI) 14(1), 2 (2007)
Gallo, L., Minutolo, A.: Design and comparative evaluation of smoothed pointing: A velocity-
oriented remote pointing enhancement technique. International Journal of Human-Computer
Studies 70(4), 287-300 (2012)

Jagacinski, R.J., Flach, J.M.: Control Theory for Humans: Quantitative approaches to model-
ing performance. Lawrence Erlbaum, Mahwah, New Jersey (2003)

Jellinek, H.D., Card, S.K.: Powermice and user performance. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 213-220. CHI *90, ACM, New
York, NY, USA (1990), http://doi.acm.org/10.1145/97243.97276

Konig, W.A., Gerken, J., Dierdorf, S., Reiterer, H.: Adaptive pointing—design and evaluation
of a precision enhancing technique for absolute pointing devices. In: IFIP Conference on
Human-Computer Interaction. pp. 658-671. Springer (2009)

Ljung, L.: System Identification — Theory for the User. Prentice Hall, Englewood Cliffs,
New Jersey, USA (1987)

. MacKenzie, I.S.: Fitts’ law as a research and design tool in human—computer interaction.

Human-computer interaction 7(1), 91-139 (1992)

Meyer, D.E., Smith, J.E.K., Kornblum, S., Abrams, R.A., Wright, C.E.: Speed-accuracy
trade-offs in aimed movements: Toward a theory of rapid voluntary action. M. Jeannerod
(Ed.), Attention and Performance XIII pp. 173-226 (1990)

Nancel, M., Pietriga, E., Chapuis, O., Beaudouin-Lafon, M.: Mid-air pointing on ultra-walls.
ACM Transactions on Computer-Human Interaction (TOCHI) 22(5), 21 (2015)

Poupyrev, 1., Billinghurst, M., Weghorst, S., Ichikawa, T.: The go-go interaction technique:
non-linear mapping for direct manipulation in vr. In: Proceedings of the 9th annual ACM
symposium on User interface software and technology. pp. 79-80. ACM (1996)

Rutledge, J.D., Selker, E.J.: Force-to-motion functions for pointing. In: Proceedings of the
IFIP TC13 Third Interational Conference on Human-Computer Interaction. pp. 701-706.
North-Holland Publishing Co. (1990)

Schmidt, R.A., Lee, T.: Motor control and learning. Human kinetics (1988)

Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois
press (2015)

Sheridan, T.B., Ferrell, W.R.: Man-machine Systems: Information, Control, and Decision
Models of Human Performance. M.L.T. Press, Cambridge, USA (1974)

Varnell, J.P., Zhang, F.: Characteristics of human pointing motions with acceleration. In:
Proc. of IEEE 54th Annual Conference on Decision and Control (CDC2015). pp. 5364-5369.
Osaka, Japan (2015)

http://doi.acm.org/10.1145/97243.97276

	Dynamics of Pointing with Pointer Acceleration

