
HeatSpace: Automatic Placement of Displays by Empirical
Analysis of User Behavior

Andreas Fender1, David Lindlbauer2, Philipp Herholz2, Marc Alexa2, Jörg Müller1

1Department of Computer Science, Aarhus University, Denmark
2TU Berlin, Germany

Input from depth cameras Voxelize Extract heatmaps Find optimal display positions

distance visibility

display 1
display 2

geometric
persistence

Figure 1. HeatSpace captures the environment and users including their viewing direction with multiple depth
cameras for empirical analysis of user behavior. Properties such as geometric persistence, distance and visibility are
extracted. HeatSpace takes the number of displays and their resolution as input and outputs their optimal position and
size. If users additionally specify the size of displays, HeatSpace will only optimize their position. Furthermore, users
can constrain the position of displays to a specific surface. HeatSpace will then find optimal display positions on that
surface.

Abstract
We present HeatSpace, a system that records and empiri-
cally analyzes user behavior in a space and automatically
suggests positions and sizes for new displays. The system
uses depth cameras to capture 3D geometry and users’
perspectives over time. To derive possible display place-
ments, it calculates volumetric heatmaps describing geo-
metric persistence and planarity of structures inside the
space. It evaluates visibility of display poses by calculat-
ing a volumetric heatmap describing occlusions, position
within users’ field of view, and viewing angle. Optimal
display size is calculated through a heatmap of average
viewing distance. Based on the heatmaps and user con-
straints we sample the space of valid display placements
and jointly optimize their positions. This can be useful
when installing displays in multi-display environments
such as meeting rooms, offices, and train stations.

Introduction
Multi-display environments (MDEs) are used in various
scenarios, ranging from individual multi-display work,
via collaborative work, to command-and-control rooms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UIST 2017, October 22–25, 2017, Quebec City, QC, Canada

c© 2017 ACM. ISBN 978-1-4503-4981-9/17/10. . . $15.00

DOI: https://doi.org/10.1145/3126594.3126621

Indeed, an increasing number of contemporary work-
places can already be considered as multi-display envi-
ronments. A practical concern can be unfavorable dis-
play placement, with displays being installed in areas
where nobody normally looks, or being occluded by fur-
niture or people.

Spaces which will be equipped with multi-display sys-
tems may be shared among groups with different usages.
This leads to the optimal display placement being non-
obvious since no single person might have a complete
overview of how the space is actually used in practice.
We approach this problem inspired by three scenarios:

Scenario 1 — Open-plan office: An open-plan office
space for 30 workers will be equipped with 5 newly pur-
chased full-HD information displays. The displays will
be mounted on walls and their positions should be cho-
sen so they are visible from as many desks as possible.
Furthermore, the displays should be located in a way to
avoid occlusion from passers-by.

Scenario 2 — Meeting room: A meeting room with
rearrangeable desks and chairs will be equipped with 3
large-scale interactive whiteboards. While the resolution
of the whiteboards is fixed through the projectors, their
size is variable. The room is used by different groups,
for example for presentations on the existing 50" display
or for brainstorming sessions on flip charts.

Scenario 3 — Train station: The lobby of a train sta-
tion will be equipped with 10 information displays. Pas-

https://doi.org/10.1145/3126594.3126621

senger behavior changes throughout the day and week.
All displays should have maximum visibility and should
not be occluded by passers-by.

In all these scenarios, various factors have to be taken
into account, including users’ position, field of view,
viewing angle between users and a potential display sur-
face, and occlusions. These factors also change over
time, which makes finding optimal display placements
challenging. The problem is exacerbated when the per-
son installing the display (the installer) has little to no
knowledge about the actual usage of the space.

We present HeatSpace, a system that analyzes user be-
havior over time and proposes display placements based
on this empirical data. The installer equips a space with
one or more commodity depth cameras (e. g. Microsoft
Kinect V2) so that their combined view covers a good
portion of the space and calibrates them using a proce-
dure similar to RoomAlive [10]. HeatSpace continuously
records user activity by incorporating automatic geome-
try reconstruction and skeleton tracking.

The retrieved depth data is used to calculate geometric
persistence (static versus moving parts of the space), dis-
tance between the users and geometry in space, and sur-
face planarity. HeatSpace continuously evaluates users’
viewing behavior to calculate the visibility of all areas
in the space based on occlusions, users’ field of view and
viewing angle. All this information is discretized and
stored in multiple 3D voxel grids. These voxel grids are
integrated over time and analyzed to generate heatmaps
of display surface quality. Our system takes potential
disturbances into account, for example occlusion through
physical objects or users.

HeatSpace takes the number of displays and their resolu-
tion as input, specified by the installer. It then automat-
ically calculates and outputs the positions and sizes of
display surfaces based on aforementioned heatmaps. As
additional input, the installer can specify the size of dis-
plays, leading to HeatSpace only optimizing the position
of the display surfaces. Furthermore, the installer can
set initial positions (e. g. on a specific wall). HeatSpace
then only optimizes the positions locally.

After installing the displays, the depth cameras can be
removed. Alternatively, they can remain in the space to
continue validating the display placement for correction
at a later stage or for interaction purposes.

HeatSpace aims at alleviating the problem of display
placement by eliminating guesswork and trial-and-error,
and replaces them with empirical analysis of actual user
behavior. In general, HeatSpace can also be used for po-
sitioning objects other than digital displays. By analyz-
ing user flow and viewing behavior, it could for example
be used to place exit signs in train stations so that they
are not occluded by passers-by.

Contributions
• A method for automatic generation of volumetric
heatmaps that enables the empirical analysis of user
behavior based on various properties including geo-
metric persistence of the space, distance and visibility.
• A method for automatically optimizing the position
and size of display surfaces based on users’ behavior,
suitable for a wide range of single-user and multi-user
scenarios, where optimal display positions are non-
obvious.

RELATED WORK

Multi-display environments
Multi-display systems are used for a variety of scenarios,
from single-user to multi-user collaboration. These sys-
tems often consist of a set of private and public displays
with different sizes and arrangements, for example in the
Stanford iRoom [9] or i-Land [24]. MDEs allow exploit-
ing the benefits of large displays, for example increased
productivity [21] and better visibility, and combine them
with private displays for example for collaborative sense-
making (e. g. [27]). MDEs were studied for a wide range
of properties, including visual attention [20], display ar-
rangement [12], distraction [4] and cross-device interac-
tion [17].

All these works share the common assumption that the
displays in a particular space are already installed. The
systems were most often set up by experts with extensive
knowledge of which groups work in a specific room as
well as their needs and habits. We believe, however, that
there is a wide range of scenarios where this knowledge
is not available.

The problem of automatically positioning displays in a
multi-display environment has not yet been addressed.
Prior work such as work by Bell et al. [1] addressed
the problem of content placement in a given space, in
their case in an augmented reality scenario. The data
gathered through HeatSpace could not only be used for
positioning displays but also for automatic content place-
ment, since properties such as visibility or field of view
are available.

Besides multi-display environments, other work focused
on fully covering spaces with display surfaces, for ex-
ample through projection. Jones et al. [10] devel-
oped RoomAlive, a living room equipped with multi-
ple projector-camera units to create an immersive en-
vironment for displaying content. Their system would
also allow displaying arbitrary contents on any surface
in a space. CAVE systems have similar capabilities [5].
Traditionally, however, conventional spaces (e. g. offices,
meeting rooms, public spaces) are equipped only with a
small number of displays, mainly due to practical reasons
such as cost. Pinhanez [18] proposed the everywhere dis-
plays projector, which is essentially a steerable projector
unit. For HeatSpace, such a device would allow for au-
tomatically positioning the display surfaces based on the
gathered data without mounting individual displays.

Space Syntax and Isovist
Our work is related to work in architecture around Space
Syntax and Isovist [2]. Space Syntax aims to compu-
tationally analyze the structure of cities and buildings
based on graphs describing connectivity, visibility rela-
tionships etc. In particular, the concept of Isovist de-
scribes all points in a space that are visible from a cer-
tain vantage point. The main difference to our work is
that, to our knowledge, most work in Space Syntax is
based on the built structure, without recordings of ac-
tual user activity. While most work in Space Syntax
describes 2D structure using graphs, some newer work
takes 3D structure into account [26].

Automatic camera and projection placement
The problem of automatically placing displays in an en-
vironment is related to the camera placement problem.
The goal of work such as by Ghanem et al. [7] is to
automatically place cameras in a room to obtain maxi-
mum visual coverage. This is related to the Art Gallery
Problem [15], which was shown to be NP-hard. There
are a variety of possible solutions to this problem, we re-
fer readers to a literature survey by Mavrinac and Chen
[13]. HeatSpace solves a related problem, i. e. given a
visual coverage for a room, find the optimal placement
for a set of display surfaces.

Bimber et al. [3] worked on various correction tech-
niques for improving projection, taking parameters such
as color or surface geometry into account. Lischke et
al. [12] used similar methods for automatically deter-
mining whether a surface is suitable for projection. In
our work, we analyze user behavior to find out where to
place displays. Their insights could serve as additional
parameters in our optimization procedure.

Analyzing viewing behavior
Users’ viewing behavior is analyzed for a wide range of
applications, including measuring visual attention of on-
line content (e. g. [14]) or public displays (e. g. [25, 28]).
Those measurements are not limited to 2D surfaces but
have also been performed on real-world 3D objects (e. g.
[16]) and immersive virtual environments (e. g. [23]).

In multi-display environments, gaze analysis is typically
performed to find out where users are looking, for ex-
ample through passive sensing [22] or head-mounted eye
trackers [11]. The data is then used e. g. to minimize
distraction by displaying contents only when users are
looking at a specific display (e. g. Dostal et al. [6]).

For analyzing and visualizing the data gathered by
HeatSpace we use heatmaps (e. g. [19, 29]) in a vol-
umetric 3D representation. 3D representations have
been used previously for saliency maps for example by
Smith et al. [22] for psychophysical experiments, how-
ever mostly for calculating data points directly on the
geometry. In contrast, we track viewing behavior not
only on existing geometry but also include information
on occlusion and geometric persistence in our volumetric
data representation.

HEATSPACE OVERVIEW
HeatSpace consists of two main components: a heatmap
generator and a placement optimizer. The heatmap gen-
erator takes data from multiple commodity depth cam-
eras (Microsoft Kinect V2) as input, three in the exam-
ples shown in the paper. The cameras are mounted and
calibrated to cover as much space as possible. This set-
ting allows us to gather a complete 3D representation of
the space as well as to track users including their head
position and orientation.

HeatSpace then continuously monitors the space and
tracks the geometry and users, for example for several
days or weeks to capture as many situations in a space
as possible. It extracts 3D voxel grids (the heatmaps)
based on multiple parameters such as geometric persis-
tence, distance between users and the geometry, and visi-
bility based on occlusion, field of view and viewing angle.
The generation of these heatmaps is detailed below.

The placement optimizer samples the heatmaps for po-
tential display surface positions and ranks the positions
according to the heatmaps. HeatSpace suggests display
surface positions and display sizes in the space based
on the number of the displays that have been specified
by the installer. If the installer chooses to also spec-
ify the size of the displays, HeatSpace only searches for
optimal positions of the display while leaving their size
fixed. Once the displays have been placed, the depth
cameras can be either removed or can remain to mon-
itor the space for changes in behavior or structure, or
interaction purposes.

DATA STRUCTURES AND PROCESSING
This section briefly introduces our data structures and
definitions used throughout the rest of the paper.

Capturing geometry and users
Multiple depth cameras are used to continuously cap-
ture the environment from various viewing angles. For
every frame we use the depth streams and the extrin-
sics and intrinsics of the cameras to reconstruct a mesh
including vertices, faces and normals, denoted as Mi =
{Fi, Vi, Ni}, shown in Figure 2. This also incorporates
geometry of users and other moving objects. In addi-
tion, we extract a set of user skeletons using the Kinect

Figure 2. The input from the depth cameras is combined
at every frame into a single mesh Mi.

Figure 3. Data calculated and stored per frame for one
voxel (yellow). The figure shows a plane that approxi-
mates the surface which cuts through the voxel (depicted
here as oblique line inside the voxel), a user situated rel-
ative to the voxel, and a neighboring voxel (gray).

SDK for tracking head position and orientation, com-
bined from all depth cameras. If a user is tracked by
multiple depth cameras, we merge the data to a single
representation in world coordinates.

Figure 3 provides an overview of all the information
apart from the heatmaps we calculate and store per
frame. We store the user’s head position u and the view
direction v pointing forward according to the head ori-
entation. We approximate the geometry that is included
in each voxel with a plane, for example to simplify cal-
culating if adjacent voxels lie on the same surface. For
each voxel, we define the following variables related to
the geometry within a voxel: the voxel center c in world
coordinates; the unit normal vector of the plane n̂; the
plane offset o ∈ R indicating the distance from the voxel
center to the plane; the point p on the plane, which is
shifted by the plane offset from the voxel center along
the normal. Lastly, we define the line of sight l between
u and p. We use 3D voxel grids to store the calculated
data.

Heatmap data
We define a heatmap h as a uniform 3D voxel grid h ∈
[0..1]m×m×m. The number of voxels m per dimension
governs the resolution of the heatmap. Each heatmap is
updated on a per-frame basis averaged over time t as

h =

t∑
i=0

1

t
hi. (1)

hi denotes the heatmap values at time i, and h the ac-
cumulated value.

HEATMAP GENERATION
HeatSpace generates and continuously updates three dif-
ferent heatmaps, namely geometric persistence, distance
and visibility. These are summarized in Figure 5. The
geometric persistence heatmap allows distinguishing be-
tween static surfaces (e. g. walls, tables) and dynamic
surfaces (e. g. passers-by, movable chairs). The distance
heatmap accumulates the distance between users and the
geometry at the current frame Mi for each voxel. If
multiple users are present, this heatmap stores average

distance values. A visibility heatmap serves as an accu-
mulated quality measure of how well each voxel can be
seen by users. We combine several criteria, specifically
the occlusion of the voxel from the point of view, where
the voxel is located in the user’s field of view, and the
viewing angle with respect to the surface normal. For
multiple simultaneous users, we only store the minimum
visibility value for each voxel to make sure to later find
display positions that are well visible for all users.

Geometric persistence
The geometric persistence heatmap hg contains the prob-
ability that the voxel contains geometry, shown in Fig-
ure 4. This heatmap is used in the optimization to find
potential candidates for display surfaces. For each frame
i, we calculate the heatmap hg,i by intersecting the voxel
grid withMi. hg takes all geometry into account, includ-
ing users that are in the space.

4000

3000
2000
1000

.0 .2 .4 .6 .8 1

Figure 4. Heatmap for geometric persistence. Red indi-
cates high persistence. Left shows all voxels that include
geometry and the corresponding persistence values, right
shows voxels with persistence > 0.9.

Distance
The distance heatmap hd encodes the distance between
every voxel and the head positions of all users. Figure 5
(c) shows an example of a distance heatmap. It is used
by the placement optimizer to calculate the perceived
resolution of a potential display surface when inferring
the optimal size of a display as discussed below. Fur-
thermore, it enables favoring close display surfaces over
distant ones, while ensuring that a display is not too close
to a user (e. g. avoiding that a 50" display is placed only
10 cm away from a user). This is enforced as part of the
energy minimization procedure, discussed later.

Visibility
The visibility heatmap hv encodes three different factors:
occlusion, field of view and viewing angle. At each frame,
all these factors are calculated individually per voxel and
combined to hv, as described below. Figure 5 (d) shows
an illustration of the factors and the resulting visibility
heatmap. After calculation, the factors are multiplied
per voxel to account for the fact that a low score in any
factor should result in an overall poor display surface
quality. For example, a good viewing angle can not make
up for an occluded voxel.

(c)

(a) Input

Occlusion Field of view Viewing angle

(b) Geometric persistence (c) Distance

(d) Visibility
Figure 5. Simple example showing how voxel grids and heat maps are generated. Note that while our heatmaps are
created as volumetric voxel grids, this figure illustrates their values on the surface geometry for better understanding.
(a) A user (blue) looks at the wall while standing at a table in front of two pillars. (b) Voxels are generated based on
geometric persistence (wall geometry is excluded in the image). (c) The distance heatmap stores the distance from each
voxel to the user’s head. (d) The visibility heatmap hv,i at time i is calculated from occlusion, field of view, and viewing
angle. Occlusion only yields the value 0 (occluded, green) or 1 (visible, red). The value for field of view is high close
to user’s line of sight, and decreases towards user’s periphery and is 0 behind the user. The value for viewing angle
decreases with increasing angle between user and geometry.

Occlusion
For each voxel we calculate if it is visible from each user’s
point of view by casting a ray from u to p. If a ray sent
from u intersects Mi before reaching p, the value in the
voxel is set to 0, otherwise it is set to 1.

Field of view
HeatSpace calculates where each voxel is located with
respect to the user’s observable world. Voxels closer to
the user’s central line of sight are rated higher than vox-
els in the peripheral field of view. Voxels located behind
the user are rated 0. This is quantified for each voxel
as max(0,−(l / ‖l‖)ᵀ ·v)ef . This essentially encodes how
easy or "natural" it is for users to look at a certain loca-
tion, meaning if they look at or close to a location any-
ways, potentially even without the presence of a display.
The exponent ef is chosen to set the importance within
the field of view. With a high exponent only surfaces
right in front of the user are considered to have a high
visibility, whereas with a small exponent also points in
the periphery are considered as well visible. In our cur-
rent implementation we set ef = 0.3, as discussed later.

Viewing angle
HeatSpace takes the angle between the line of sight and
the geometry normal at the intersection point with Mi

into account. If the viewing angle is very steep, the dis-
play quality would be decreased, even though a surface
might be visible for users. We calculate this for each
voxel as max(0,−(l / ‖l‖)ᵀ · n̂)ea . The exponent ea can
be chosen similarly to ef , in our current implementation
ea = 0.35.

DISPLAY PLACEMENT
In the following we detail our algorithm for automatically
placing display surfaces in a space given the heatmaps for

geometric persistence, distance and visibility, denoted
hg, hd and hv, respectively.

Number
(required)

Initial
placement
(optional)

Size
(optional)

Specify
displays

Find
display

surfaces

Resolution
(required)

Manual Automatic
Figure 6. The installer specifies the number of displays
and their resolution (i. e. number of pixels), all other
measures can be computed automatically by our software.

Input and output
The output of the display placement algorithm depends
on the input of the installer, illustrated in Figure 6. As a
minimum input, the installer specifies (1) the number of
displays that should be placed in a space and (2) their
resolution. We refer to the number of horizontal and
vertical pixels on a display as the resolution of a display.
Conversely, we later optimize the size of a display sur-
face based on the perceived resolution of a display. We
use the term perceived resolution to describe the max-
imum size of a pixel with which a user cannot see the
individual pixels on a display, governed by human visual
acuity of 1 minute of arc. This gives us the size of a dis-
play given a resolution defined by the installer. With this
information, HeatSpace will find the optimal display sur-
face position and their size. Optionally, the installer can
specify (3) the size of the displays, leading to HeatSpace
only suggesting optimal display surface positions. As a
last optional parameter, the installer can specify (4) ini-
tial display placements, for example on which wall the

displays should be located. HeatSpace will then position
the display surfaces on the same surface as those initial
placements (e. g. same wall). If size or position are spec-
ified, we use them as constraints in our optimization.

Optimization
We approach the problem of automatic placement based
on the following constraints.

(C1) Display surfaces should be located on geometrically
persistent regions.

(C2) Display surfaces should be located on planar re-
gions.

(C3) Display surfaces should be located in visible re-
gions.

(C4) Display sizes should yield specified screen sizes for
average user distance.

Finding suitable display surfaces
The first step in our display placement procedure is to
find planar and geometrically persistent candidate re-
gions (C1 and C2) for display placement. We identify
suitable areas by filtering the voxel graph G which con-
nects each voxel to its up to six neighbors. We use a
graph representation since this allows us to easily com-
pare the geometric persistence and planarity of adjacent
voxels. To account for (C1) we filter the graph based on
geometric persistence, yielding a subgraph G′ defined by
the edges connecting persistent voxels i, j:

G′ : {(i, j) ∈ G, hg(i) > τ &hg(j) > τ}. (2)

τ denotes the threshold for geometric persistence, typ-
ically in the range of 0.9 to account for noise from the
depth cameras. In the next step, we filter the graph G′
based on planarity, i.e. we remove edges between vox-
els if they do not lie on the same surface plane. This
subgraph G′′ can be defined as

G′′ : {(i, j) ∈ G′ : α(i, j) > ρ}, (3)

where α(i, j) describes the angle between the planes of
voxels i and j. ρ is the threshold for disconnecting the
nodes of G′. In our case ρ = 10◦ to account for noise in
the depth cameras. Candidate regions are subsequently
identified as connected components C = (c0, c1, · · · , ck)
of G′′. As a simple example, in an empty space each
member of C would cover one mostly planar region, e.g.
a wall, floor or ceiling if captured by the depth cameras.
This also means that most members of C cover a larger
area than necessary for positioning a display.

Finding positions and sizes for display surfaces
If the installer specifies the number of displays and their
resolutions (e.g. 1920 × 1080 pixels), HeatSpace will au-
tomatically place displays on candidate regions in order
to optimize with respect to (C3) and (C4). First, we
sample potential display positions. For each voxel in a
candidate region the voxel center is projected onto the
corresponding plane and serves as display center. Us-
ing information from the distance heatmap hd, the dis-
play width is computed using the human visual acuity

Figure 7. Left shows G′ with all voxels filtered for geomet-
ric persistence. Right shows all candidates in C, with each
color representing one connected component (i. e. voxels
on the same plane).

and display resolution, i.e. a pixel should on average be
about 1 arc minute in width. Therefore, the width of the
display is computed as

width = tan(1′) · distance · resolutionx (4)

The height is calculated from the aspect ratio of the dis-
play. This measure could be replaced also taking other
parameters such as contrast and readability into account
(cf. Ziefle [30] or Healey and Sawant [8]).

Given position and dimensions we can place the display
on the surface keeping the x-axis of the display parallel
to the floor. In order to check for (C1) and (C2) we
have to ensure that all voxels intersected by the display
belong to the same planar component ci. If this is the
case we sum the per-voxel energy

E = hv · fd(hd) (5)

over all intersected voxels and store this data along with
the display geometry as potential display. The function
fd is designed to penalize small distances (< 0.5m) and
hv favors visible areas. Note that we have to keep inde-
pendent samples for each specified display resolution.

To find the position of n displays we first place them
greedily in an arbitrary order by picking the highest scor-
ing candidate from the samples which do not overlap
with already placed displays. This strategy is of course
not optimal. If two displays end up in the same con-
nected component, moving both of them into a less op-
timal position could still result in better total energy.
To deal with this problem we jointly optimize all display
positions per connected component using an alternating
gradient descent approach if two or more displays hap-
pen to reside on the same component.

Starting with a valid, overlap-free but random placement
for each display we repeatedly move the displays to close-
by samples in order to individually maximize the energy
function. Eventually the process converges and a local
optimum is found. We repeat the process for several
starting conditions (five in all our examples) and pick
the solution with highest energy.

Installer constraints
If the installer wishes to fix display sizes the sampling
procedure will simply skip the optimal size computation

and use the pre-defined display geometry. If initial po-
sitions are specified, only samples for the corresponding
candidate (i. e. the connected component the initial posi-
tion is part of) are considered for that display, effectively
constraining the position to a specific surface.

IMPLEMENTATION
This section briefly outlines the implementation of our
software, which we are planning to release as open
source. HeatSpace consists of three components: the
heatmap generator, the display placement optimizer and
the editor for installers.

Heatmap generator
The heatmap generator is implemented as a Unity 5
plugin in C#, running on a commodity gaming com-
puter with Windows 10. This computer also acts as a
server retrieving the data from all depth cameras. Each
Kinect camera is connected to an individual computer
that streams the data to this server, similar to RoomA-
live [10]. The Unity application retrieves the depth
streams and performs the geometry reconstruction and
all other calculations discussed in Section Data struc-
tures and processing. For each frame, it calculates and
stores the heatmaps for geometric persistence, distance
and visibility.

Display placement
The placement optimizer is implemented as a Mathemat-
ica application, exchanging data with the Unity applica-
tion. It retrieves the heatmaps and parameters speci-
fied by the installer and outputs the final display place-
ments. We use Mathematica for filtering data, convert-
ing heatmaps into graphs and finding connected compo-
nents. Furthermore, it holds the custom implementation
of the alternating gradient descent optimization we are
using for inferring the size and position of potential dis-
play surfaces.

Editor for installers
The editor for installers is implemented on top of the
HeatSpace Unity 5 plugin. Installers define potential
display positions and get realtime feedback on their vis-
ibility. The optimizer can be setup and triggered using
the editor. Furthermore, installers can view the geomet-
ric persistence heatmap which also holds information on
common user flow.

Figure 8. The HeatSpace editor allows the installer to add
displays in a space and to set constraints such as initial
placements or size (left). It automatically optimizes the
position and size based on the installer’s input (right).

EXAMPLES
As example of usage of HeatSpace we used the system
while working on this paper. We recorded several hours
of ourselves working, and rearranged the room several
times for joint discussions on a whiteboard, individual
paper writing, and proofreading. All examples are de-
picted in Figure 9.

Setup
We used 3 Kinects to capture a room with dimensions
4m × 4m × 4m. Since automatically placing displays
does not require high resolution data, we opted for a
real-world voxel side length of 12.5 cm. This results in
323 = 32768 voxels in each of the heatmaps. The three
examples yielded several hours of recording in total. The
heatmaps for each example were 2.4 megabytes in size.

Weighting field of view and viewing angle
We chose a relatively small exponent as a parameter for
the previously described field of view (typically ef =
0.3). This means that surfaces in the periphery are still
considered well suited for placing displays. We had in
mind that users will not look at an empty wall, however
this is likely to change if there was a display. In the pe-
riphery, while users have to take an effort to see a display
(e. g. turn their head), they are likely to notice changes
in content. If the goal was to minimize head rotation,
the installer could choose a higher exponent. Similarly,
the exponent for viewing angle was chosen to be small
(ea = 0.35). We believe that not looking completely
straight at a display does not immediately reduce visi-
bility. This would be different, e.g., with displays that
have a low viewing angle range.

Example 1 — Room with couch: In the first exam-
ple, one user was mostly seated on a couch in the center
of the room, proofreading this paper. Occasionally, an-
other person came through the door walking from the
front of the room to the back for discussions. This is re-
flected in the geometric persistence heatmap hg, shown
in Figure 9, bottom left. The installer chose to add two
big displays and a smaller one in the room, only con-
strained in resolution. Therefore, HeatSpace optimized
the position and size of the displays. This resulted in
two big displays positioned exactly in front of the user
and the smaller display on the side (see Figure 9, center
left). Qualitatively, this goes in line with the data from
the visibility heatmap hv, where the hotspot is in the
corner where the displays were placed.

Example 2 — Two users at large desk: Two users
were recorded sitting on opposite sides of a large desk
(see Figure 9, middle), working on the text of this pa-
per individually. Therefore, they were both blocking the
views on the walls behind them. The installer added
three displays, only constrained in resolution. For this
example the installer configured the system to only op-
timize for one of the users. After optimization, the two
displays close to the user have a smaller size than the
display on the other side of the room.

Example 1
In

pu
t

Fi
na

l d
is

pl
ay

 p
os

iti
on

s
H

ea
tm

ap
s

Example 2 Example 3

Figure 9. We recorded three examples with different number of users and different room configurations. Top shows the
input mesh from the depth cameras, center the final display placements. Bottom hows the three calculated heatmaps
for geometric persistence, distance and visibility, i. e. hg, hd and hv respectively.

Example 3 — Two users at small desk: Two users
who were sitting opposite each other at a small desk
where recorded while working. The display size is un-
constrained in this example. In contrast to example 2,
the installer configured the system to optimize for both
users. HeatSpace therefore optimized the position and
size of the displays to be located on the wall, which is
visible for both.

DISCUSSION AND FUTURE WORK
Nowadays, displays are usually placed by intuition. Es-
pecially for multi-purpose spaces that are shared among
groups, "guessing" the correct display placement can be
problematic. With HeatSpace, we automate finding suit-
able display surfaces by quantifying parameters such as
distance and visibility. Note that our system trivially
generalizes to non-digital displays, such as signs, art-
work, noticeboards etc.

Scalability and capture time
Since all depth cameras are connected to individual com-
puters, our setup can easily handle 5-10 and more depth
cameras. The maximum number of cameras only de-
pends on the computational power of the server running
the Unity application. Alternatively, HeatSpace allows
for recording all streams individually to combine and
process them afterwards. This relaxes the realtime and
network requirements, but increases the storage require-
ments considerably. The heatmaps itself require little
storage, currently in the order of few megabytes, which
does not increase over time. We imagine HeatSpace to
run continuously over the course of several days or weeks
to get a full picture of activity happening in a space.

Behavioral change
Installing displays changes the behavior of people. This
is an inherent property of any planned change of the en-
vironment. Therefore, the best strategy would be to cap-
ture user behavior before any displays are installed. After
display installation, the display areas would likely attract
more views than before. One of the goals of HeatSpace
is to position the displays so that there is a minimal be-
havioral change, i.e., to integrate displays seamlessly into
the workflow and environment. Therefore, the placement
of displays that intend to change the workflow, i.e., in-
teractive touch-enabled displays, can not be optimized
directly. However, display installations can be verified
and refined.

Ceiling-suspended displays
Currently, HeatSpace automatically finds display place-
ments on existing geometry. Our next step would be to
also consider displays that are suspended from the ceil-
ing or on stands. The key difficulty with such displays is
that they can change the occlusion pattern in the room.

Digital content
The core concept can be used to optimize placement
of digital content of already existing displays and pro-
jectors. This is especially interesting for dynamic con-
tent, like view-dependent perspective-corrected render-
ings. Extending our data structures would allow for op-
timizing placement of content shown through projection
mapping.

Gaze tracking
While instrumenting users is impractical in our scenar-
ios, the availability of accurate long-distance remote eye

trackers would enable an obvious extension of our sys-
tem. Integrating gaze tracking in our system would be
trivial, requiring no changes to data structures and al-
gorithms. However, currently we optimize display place-
ments to where they could easily be seen, assuming users
would move their eyes to look at them. Optimizing for
actual gaze direction would mean placing displays di-
rectly where users usually look, an approach that is not
necessarily superior to our current approach.

Weighting of Events
HeatSpace currently averages heatmap data over time,
which essentially ranks specific settings (e. g. 3 users
in a room discussing a project) based on the relative
amount of time they occur. However, some events,
such as the presence of a manager —although occurring
infrequently— might be very important and require a
special room configuration. We plan to enable installers
to rate the relative importance of recorded events.

Visibility parameters
Different exponents for field of view and viewing angle
account for different types of content and scenarios. For
instance, static content, like signs or paintings, require a
large field of view exponent, since these are often over-
looked in the periphery. Dynamic animated content on
the other hand, is easily visible in the periphery. Cur-
rently, the installer has to set the importance of the vis-
ibility factors manually. Future iterations might inves-
tigate finding these parameters automatically based on
color and movement of displayed content.

CONCLUSION
HeatSpace suggests the optimal position and size of dis-
play surfaces in a space based on user behavior. To do
so, it gathers data from multiple depth cameras and
calculates measures of visibility, geometric persistence,
and distance with respect to users in the space. Data is
stored in multiple volumetric heatmaps for fast compu-
tation and avoiding artifacts from noise in the data of
the depth cameras. Display sizes and positions are op-
timized using alternating gradient descent. Our system
allows to quantitatively evaluate display placements and
aims at reducing guesswork for finding optimal display
positions.

ACKNOWLEDGMENTS
This work has been supported by IFD grant no. 3067-
00001B for the project entitled: MADE - A platform for
future production.

REFERENCES
1. Blaine Bell, Steven Feiner, and Tobias Höllerer.

2001. View Management for Virtual and
Augmented Reality. In Proceedings of the 14th
Annual ACM Symposium on User Interface
Software and Technology (UIST ’01). ACM, New
York, NY, USA, 101–110. DOI:
http://dx.doi.org/10.1145/502348.502363

2. Michael L Benedikt. 1979. To take hold of space:
isovists and isovist fields. Environment and

Planning B: Planning and design 6, 1 (1979),
47–65.

3. Oliver Bimber, Daisuke Iwai, Gordon Wetzstein,
and Anselm Grundhöfer. 2008. The Visual
Computing of Projector-Camera Systems. In
Computer Graphics Forum, Vol. 27. Wiley Online
Library, 2219–2245.

4. Jeremy Birnholtz, Lindsay Reynolds, Eli
Luxenberg, Carl Gutwin, and Maryam Mustafa.
2010. Awareness Beyond the Desktop: Exploring
Attention and Distraction with a Projected
Peripheral-vision Display. In Proceedings of
Graphics Interface 2010 (GI ’10). Canadian
Information Processing Society, Toronto, Ont.,
Canada, Canada, 55–62.
http://dl.acm.org/citation.cfm?id=1839214.1839225

5. Carolina Cruz-Neira, Daniel J. Sandin, and
Thomas A. DeFanti. 1993. Surround-screen
Projection-based Virtual Reality: The Design and
Implementation of the CAVE. In Proceedings of the
20th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’93).
ACM, New York, NY, USA, 135–142. DOI:
http://dx.doi.org/10.1145/166117.166134

6. Jakub Dostal, Per Ola Kristensson, and Aaron
Quigley. 2013. Subtle Gaze-dependent Techniques
for Visualising Display Changes in Multi-display
Environments. In Proceedings of the 2013
International Conference on Intelligent User
Interfaces (IUI ’13). ACM, 137–148. DOI:
http://dx.doi.org/10.1145/2449396.2449416

7. Bernard Ghanem, Yuanhao Cao, and Peter Wonka.
2015. Designing Camera Networks by Convex
Quadratic Programming. Comput. Graph. Forum
34, 2 (May 2015), 69–80. DOI:
http://dx.doi.org/10.1111/cgf.12542

8. Christopher G. Healey and Amit P. Sawant. 2012.
On the Limits of Resolution and Visual Angle in
Visualization. ACM Trans. Appl. Percept. 9, 4,
Article 20 (Oct. 2012), 21 pages. DOI:
http://dx.doi.org/10.1145/2355598.2355603

9. B. Johanson, A. Fox, and T. Winograd. 2002. The
Interactive Workspaces project: experiences with
ubiquitous computing rooms. IEEE Pervasive
Computing 1, 2 (April 2002), 67–74. DOI:
http://dx.doi.org/10.1109/MPRV.2002.1012339

10. Brett Jones, Rajinder Sodhi, Michael Murdock,
Ravish Mehra, Hrvoje Benko, Andrew Wilson, Eyal
Ofek, Blair MacIntyre, Nikunj Raghuvanshi, and
Lior Shapira. 2014. RoomAlive: Magical
Experiences Enabled by Scalable, Adaptive
Projector-camera Units. In Proceedings of the 27th
Annual ACM Symposium on User Interface
Software and Technology (UIST ’14). ACM,
637–644.

http://dx.doi.org/10.1145/502348.502363
http://dl.acm.org/citation.cfm?id=1839214.1839225
http://dx.doi.org/10.1145/166117.166134
http://dx.doi.org/10.1145/2449396.2449416
http://dx.doi.org/10.1111/cgf.12542
http://dx.doi.org/10.1145/2355598.2355603
http://dx.doi.org/10.1109/MPRV.2002.1012339

11. Christian Lander, Sven Gehring, Antonio Krüger,
Sebastian Boring, and Andreas Bulling. 2015.
GazeProjector: Accurate Gaze Estimation and
Seamless Gaze Interaction Across Multiple
Displays. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software and
Technology (UIST ’15). ACM, 395–404. DOI:
http://dx.doi.org/10.1145/2807442.2807479

12. Lars Lischke, Sven Mayer, Katrin Wolf, Niels
Henze, Harald Reiterer, and Albrecht Schmidt.
2016. Screen Arrangements and Interaction Areas
for Large Display Work Places. In Proceedings of
the 5th ACM International Symposium on
Pervasive Displays (PerDis ’16). ACM, New York,
NY, USA, 228–234. DOI:
http://dx.doi.org/10.1145/2914920.2915027

13. Aaron Mavrinac and Xiang Chen. 2013. Modeling
Coverage in Camera Networks: A Survey.
International Journal of Computer Vision 101, 1
(2013), 205–226. DOI:
http://dx.doi.org/10.1007/s11263-012-0587-7

14. Lori McCay-Peet, Mounia Lalmas, and Vidhya
Navalpakkam. 2012. On Saliency, Affect and
Focused Attention. In Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems (CHI ’12). ACM, 541–550. DOI:
http://dx.doi.org/10.1145/2207676.2207751

15. Joseph O’Rourke. 1987. Art Gallery Theorems and
Algorithms. Oxford University Press, Inc., New
York, NY, USA.

16. Thies Pfeiffer. 2012. Measuring and Visualizing
Attention in Space with 3D Attention Volumes. In
Proceedings of the Symposium on Eye Tracking
Research and Applications (ETRA ’12). ACM,
29–36. DOI:http://dx.doi.org/10.1145/2168556.2168560

17. Miguel A. Nacenta PhD, Carl Gutwin, Dzmitry
Aliakseyeu, and Sriram Subramanian. 2009. There
and Back Again: Cross-Display Object Movement
in Multi-Display Environments. Human–Computer
Interaction 24, 1-2 (2009), 170–229. DOI:
http://dx.doi.org/10.1080/07370020902819882

18. Claudio S. Pinhanez. 2001. The Everywhere
Displays Projector: A Device to Create Ubiquitous
Graphical Interfaces. In Proceedings of the 3rd
International Conference on Ubiquitous Computing
(UbiComp ’01). Springer-Verlag, London, UK, UK,
315–331.
http://dl.acm.org/citation.cfm?id=647987.741324

19. Marc Pomplun, Helge Ritter, and Boris
Velichkovsky. 1996. Disambiguating Complex
Visual Information: Towards Communication of
Personal Views of a Scene. Perception 25, 8 (1996),
931–948. DOI:http://dx.doi.org/10.1068/p250931
PMID: 8938007.

20. Umar Rashid, Miguel A. Nacenta, and Aaron
Quigley. 2012. Factors Influencing Visual Attention
Switch in Multi-display User Interfaces: A Survey.
In Proceedings of the 2012 International
Symposium on Pervasive Displays (PerDis ’12).
ACM, New York, NY, USA, Article 1, 6 pages.
DOI:http://dx.doi.org/10.1145/2307798.2307799

21. George Robertson, Mary Czerwinski, Patrick
Baudisch, Brian Meyers, Daniel Robbins, Greg
Smith, and Desney Tan. 2005. The Large-Display
User Experience. IEEE Comput. Graph. Appl. 25, 4
(July 2005), 44–51. DOI:
http://dx.doi.org/10.1109/MCG.2005.88

22. Brian A. Smith, Qi Yin, Steven K. Feiner, and
Shree K. Nayar. 2013. Gaze Locking: Passive Eye
Contact Detection for Human-object Interaction. In
Proceedings of the 26th Annual ACM Symposium
on User Interface Software and Technology (UIST
’13). ACM, 271–280. DOI:
http://dx.doi.org/10.1145/2501988.2501994

23. Sophie Stellmach, Lennart Nacke, and Raimund
Dachselt. 2010. 3D Attentional Maps: Aggregated
Gaze Visualizations in Three-dimensional Virtual
Environments. In Proceedings of the International
Conference on Advanced Visual Interfaces (AVI
’10). ACM, 345–348. DOI:
http://dx.doi.org/10.1145/1842993.1843058

24. Norbert A. Streitz, Jörg Geißler, Torsten Holmer,
Shin’ichi Konomi, Christian Müller-Tomfelde,
Wolfgang Reischl, Petra Rexroth, Peter Seitz, and
Ralf Steinmetz. 1999. i-LAND: An Interactive
Landscape for Creativity and Innovation. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’99). ACM,
New York, NY, USA, 120–127. DOI:
http://dx.doi.org/10.1145/302979.303010

25. Yusuke Sugano, Xucong Zhang, and Andreas
Bulling. 2016. AggreGaze: Collective Estimation of
Audience Attention on Public Displays. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16).
ACM, New York, NY, USA, 821–831. DOI:
http://dx.doi.org/10.1145/2984511.2984536

26. Tasos Varoudis and Sophia Psarra. 2014. Beyond
two dimensions: architecture through three
dimensional visibility graph analysis. The Journal
of Space Syntax 5, 1 (2014), 91–108.

27. James R. Wallace, Stacey D. Scott, and Carolyn G.
MacGregor. 2013. Collaborative Sensemaking on a
Digital Tabletop and Personal Tablets:
Prioritization, Comparisons, and Tableaux. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 3345–3354. DOI:
http://dx.doi.org/10.1145/2470654.2466458

http://dx.doi.org/10.1145/2807442.2807479
http://dx.doi.org/10.1145/2914920.2915027
http://dx.doi.org/10.1007/s11263-012-0587-7
http://dx.doi.org/10.1145/2207676.2207751
http://dx.doi.org/10.1145/2168556.2168560
http://dx.doi.org/10.1080/07370020902819882
http://dl.acm.org/citation.cfm?id=647987.741324
http://dx.doi.org/10.1068/p250931
http://dx.doi.org/10.1145/2307798.2307799
http://dx.doi.org/10.1109/MCG.2005.88
http://dx.doi.org/10.1145/2501988.2501994
http://dx.doi.org/10.1145/1842993.1843058
http://dx.doi.org/10.1145/302979.303010
http://dx.doi.org/10.1145/2984511.2984536
http://dx.doi.org/10.1145/2470654.2466458

28. Robert Walter, Andreas Bulling, David Lindlbauer,
Martin Schuessler, and Jörg Müller. 2015.
Analyzing Visual Attention During Whole Body
Interaction with Public Displays. In Proceedings of
the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing (UbiComp
’15). ACM, 1263–1267. DOI:
http://dx.doi.org/10.1145/2750858.2804255

29. David S. Wooding. 2002. Fixation Maps:
Quantifying Eye-movement Traces. In Proceedings
of the 2002 Symposium on Eye Tracking Research
& Applications (ETRA ’02). ACM, 31–36. DOI:
http://dx.doi.org/10.1145/507072.507078

30. Martina Ziefle. 1998. Effects of Display Resolution
on Visual Performance. Human Factors 40, 4
(1998), 554–568. DOI:
http://dx.doi.org/10.1518/001872098779649355

http://dx.doi.org/10.1145/2750858.2804255
http://dx.doi.org/10.1145/507072.507078
http://dx.doi.org/10.1518/001872098779649355

	Contributions
	Related Work
	Multi-display environments
	Space Syntax and Isovist
	Automatic camera and projection placement
	Analyzing viewing behavior

	HeatSpace Overview
	Data structures and processing
	Capturing geometry and users
	Heatmap data

	Heatmap generation
	Geometric persistence
	Distance
	Visibility
	Occlusion
	Field of view
	Viewing angle

	Display placement
	Input and output
	Optimization
	Finding suitable display surfaces
	Finding positions and sizes for display surfaces
	Installer constraints

	Implementation
	Heatmap generator
	Display placement
	Editor for installers

	Examples
	Setup
	Weighting field of view and viewing angle

	Discussion and future work
	Scalability and capture time
	Behavioral change
	Ceiling-suspended displays
	Digital content
	Gaze tracking
	Weighting of Events
	Visibility parameters

	Conclusion
	Acknowledgments
	References

